{"title":"Synthesis and characterization of the doped/co-doped SnO2 nanoparticles by the sol–gel method","authors":"Fatma Aydın Ünal","doi":"10.1111/ijac.14916","DOIUrl":null,"url":null,"abstract":"<p>Tin oxide (SnO<sub>2</sub>) is one of the important semiconductors used in the application of solar cells because of its chemical–mechanical stability and wide band gap. These properties are very important for the performance development and photoanode optimization of a dye-sensitized solar cell (DSSC). However, the low conduction band value of SnO<sub>2</sub> reduces the photovoltaic efficiency, which limits the application of DSSC. Therefore, the doping strategy was used to increase the sensitivity to the visible light spectrum and change the light absorption properties of SnO<sub>2</sub>. In this paper, pure SnO<sub>2</sub>, Ag/SnO<sub>2</sub>, Pt/SnO<sub>2,</sub> and Pt/Ag/SnO<sub>2</sub> nanoparticles were synthesized at the nanoscale by a simple chemical sol–gel method. To characterize the structure, morphological/chemical properties, optical properties, and surface properties of the synthesized SnO<sub>2</sub> nanoparticles, X-Ray Diffraction (XRD), ultraviolet–visible, Brunauer–Emmett–Teller, Scanning Electron Microscopy (SEM)/Energy Dispersive X-Ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), and particle size analysis were respectively used. XRD results showed that the crystal sizes varied between 8.8 and 12.2 nm depending on the doping. Doping processes resulted in reductions in particle sizes. Optical studies resulted in decreases in the band gap with the doping process. The conclusions obtained have shown that Ag doping, and Pt–Ag co-doping can be promising for use as photoanode materials in semiconductor technology and especially in DSSC applications.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ijac.14916","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14916","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Tin oxide (SnO2) is one of the important semiconductors used in the application of solar cells because of its chemical–mechanical stability and wide band gap. These properties are very important for the performance development and photoanode optimization of a dye-sensitized solar cell (DSSC). However, the low conduction band value of SnO2 reduces the photovoltaic efficiency, which limits the application of DSSC. Therefore, the doping strategy was used to increase the sensitivity to the visible light spectrum and change the light absorption properties of SnO2. In this paper, pure SnO2, Ag/SnO2, Pt/SnO2, and Pt/Ag/SnO2 nanoparticles were synthesized at the nanoscale by a simple chemical sol–gel method. To characterize the structure, morphological/chemical properties, optical properties, and surface properties of the synthesized SnO2 nanoparticles, X-Ray Diffraction (XRD), ultraviolet–visible, Brunauer–Emmett–Teller, Scanning Electron Microscopy (SEM)/Energy Dispersive X-Ray Spectroscopy (EDX), Transmission Electron Microscopy (TEM), and particle size analysis were respectively used. XRD results showed that the crystal sizes varied between 8.8 and 12.2 nm depending on the doping. Doping processes resulted in reductions in particle sizes. Optical studies resulted in decreases in the band gap with the doping process. The conclusions obtained have shown that Ag doping, and Pt–Ag co-doping can be promising for use as photoanode materials in semiconductor technology and especially in DSSC applications.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;