Using lightweight denoising network to suppress multiple barrage jamming in range-Doppler domain

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Minghua Wu, Yupei Lin, Dongyang Cheng, Dan Song, Bin Rao, Wei Wang
{"title":"Using lightweight denoising network to suppress multiple barrage jamming in range-Doppler domain","authors":"Minghua Wu,&nbsp;Yupei Lin,&nbsp;Dongyang Cheng,&nbsp;Dan Song,&nbsp;Bin Rao,&nbsp;Wei Wang","doi":"10.1049/rsn2.12645","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>Barrage jamming technology poses a significant threat to radar detection functions, yet there is limited research on anti-multiple barrage jamming using single-channel radar systems. Addressing this gap, this paper proposes a framework for anti-multiple barrage jamming based on range-Doppler domain denoising. This framework first performs pulse compression and Doppler processing on the echo signal to enhance the signal-to-jamming ratio. The range-Doppler spectrum data is then input into a deep denoising network to suppress multiple types of jamming. Additionally, the paper proposes a lightweight deep denoising network comprising a feature extraction module, a jamming suppression module, and a feature fusion module. The feature extraction module preliminarily extracts jamming features using multiple layers of depth-wise and point-wise convolution. The jamming suppression module removes noise at various resolutions through a lightweight encoding and decoding structure, effectively suppressing the barrage jamming signal. The feature fusion module uses convolution kernels with different sizes to merge the multiple features output by the jamming suppression module. Simulation results demonstrate that the proposed method effectively suppresses ten types of barrage jamming. Furthermore, a measured dataset is constructed to verify the method’s effectiveness.</p>\n </section>\n </div>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 11","pages":"2308-2324"},"PeriodicalIF":1.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12645","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12645","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Barrage jamming technology poses a significant threat to radar detection functions, yet there is limited research on anti-multiple barrage jamming using single-channel radar systems. Addressing this gap, this paper proposes a framework for anti-multiple barrage jamming based on range-Doppler domain denoising. This framework first performs pulse compression and Doppler processing on the echo signal to enhance the signal-to-jamming ratio. The range-Doppler spectrum data is then input into a deep denoising network to suppress multiple types of jamming. Additionally, the paper proposes a lightweight deep denoising network comprising a feature extraction module, a jamming suppression module, and a feature fusion module. The feature extraction module preliminarily extracts jamming features using multiple layers of depth-wise and point-wise convolution. The jamming suppression module removes noise at various resolutions through a lightweight encoding and decoding structure, effectively suppressing the barrage jamming signal. The feature fusion module uses convolution kernels with different sizes to merge the multiple features output by the jamming suppression module. Simulation results demonstrate that the proposed method effectively suppresses ten types of barrage jamming. Furthermore, a measured dataset is constructed to verify the method’s effectiveness.

Abstract Image

采用轻量降噪网络抑制距离-多普勒域多弹幕干扰
弹幕干扰技术对雷达的探测功能构成了重大威胁,但利用单通道雷达系统对抗多重弹幕干扰的研究有限。针对这一不足,本文提出了一种基于距离-多普勒域去噪的抗多弹幕干扰框架。该框架首先对回波信号进行脉冲压缩和多普勒处理,以提高信噪比。然后将距离-多普勒频谱数据输入到深度去噪网络中以抑制多种类型的干扰。此外,本文还提出了一种轻量级的深度去噪网络,该网络由特征提取模块、干扰抑制模块和特征融合模块组成。特征提取模块通过多层深度卷积和点向卷积初步提取干扰特征。干扰抑制模块通过轻量的编解码结构去除各种分辨率的噪声,有效抑制弹幕干扰信号。特征融合模块使用不同大小的卷积核对干扰抑制模块输出的多个特征进行融合。仿真结果表明,该方法能有效抑制十种类型的弹幕干扰。在此基础上,构建了一个实测数据集来验证该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信