Optimization of tribocatalytic performance by modifying the concentration of oxygen vacancies in KSr2Nb4TaO15 ceramics

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS
Shirong Lin, Yingzhi Meng, Changbing Pan, Zhi Yuan, Luanhai Ou, Shanjun Ke, Changzheng Hu, Xiuyun Lei, Laijun Liu
{"title":"Optimization of tribocatalytic performance by modifying the concentration of oxygen vacancies in KSr2Nb4TaO15 ceramics","authors":"Shirong Lin,&nbsp;Yingzhi Meng,&nbsp;Changbing Pan,&nbsp;Zhi Yuan,&nbsp;Luanhai Ou,&nbsp;Shanjun Ke,&nbsp;Changzheng Hu,&nbsp;Xiuyun Lei,&nbsp;Laijun Liu","doi":"10.1111/ijac.14912","DOIUrl":null,"url":null,"abstract":"<p>In recent years, catalytic degradation driven by mechanical-energy tribocatalysis has gained much attention. Point defects play very important on the catalytic activity of ferroelectric oxides. In this study, we focus on the influence of oxygen vacancies on the catalyst performance of ferroelectric oxide KSr<sub>2</sub>Nb<sub>4</sub>TaO<sub>15</sub> (KSNT) with a tetragonal tungsten bronze structure. The concentration of oxygen vacancies is modified by sintering atmosphere. The KSNT sintered in N<sub>2</sub> atmosphere exhibits the best tribocatalytic degradation efficiency of 96.7% within 2 h for degradation rhodamine B due to high concentration of oxygen vacancies. The excellent degradation efficiency is attributed to the defect energy level of KSNT and high electron–hole separation efficiency. This work reveals the relationship between oxygen vacancies and tribocatalysis efficiency, which is helpful to design and modify the new ferroelectric oxides for tribocatalysis.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"22 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14912","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, catalytic degradation driven by mechanical-energy tribocatalysis has gained much attention. Point defects play very important on the catalytic activity of ferroelectric oxides. In this study, we focus on the influence of oxygen vacancies on the catalyst performance of ferroelectric oxide KSr2Nb4TaO15 (KSNT) with a tetragonal tungsten bronze structure. The concentration of oxygen vacancies is modified by sintering atmosphere. The KSNT sintered in N2 atmosphere exhibits the best tribocatalytic degradation efficiency of 96.7% within 2 h for degradation rhodamine B due to high concentration of oxygen vacancies. The excellent degradation efficiency is attributed to the defect energy level of KSNT and high electron–hole separation efficiency. This work reveals the relationship between oxygen vacancies and tribocatalysis efficiency, which is helpful to design and modify the new ferroelectric oxides for tribocatalysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Applied Ceramic Technology
International Journal of Applied Ceramic Technology 工程技术-材料科学:硅酸盐
CiteScore
3.90
自引率
9.50%
发文量
280
审稿时长
4.5 months
期刊介绍: The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas: Nanotechnology applications; Ceramic Armor; Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors); Ceramic Matrix Composites; Functional Materials; Thermal and Environmental Barrier Coatings; Bioceramic Applications; Green Manufacturing; Ceramic Processing; Glass Technology; Fiber optics; Ceramics in Environmental Applications; Ceramics in Electronic, Photonic and Magnetic Applications;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信