SG-FET Based Spiking Neuron With Ultra-Low Energy Consumption for ECG Signal Classification

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Babar M. Zargar, Mudasir A. Khanday, Farooq A. Khanday
{"title":"SG-FET Based Spiking Neuron With Ultra-Low Energy Consumption for ECG Signal Classification","authors":"Babar M. Zargar,&nbsp;Mudasir A. Khanday,&nbsp;Farooq A. Khanday","doi":"10.1002/jnm.70003","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper presents an energy-efficient single-transistor leaky integrate-and-fire neuron, based on Suspended Gate-FET (SG-FET), for signal classification and neuromorphic computing applications. By leveraging the SG-FET model, extensive simulations were conducted to demonstrate the device's remarkable neuronal ability. The device faithfully emulated the intricate behaviour of biological neurons, without the need for external circuitry. One of the standout achievements lies in the device's astonishingly low energy consumption of 94.5 aJ per spike. Therefore, it outperforms the previously proposed one-transistor (1-T) neurons, which makes it a potential candidate for energy-efficient neuromorphic computing. To verify the practical viability of the device, an emulation was seamlessly integrated into a spiking neural network framework, allowing for real-time signal classification. In this specific case, the device excelled in the classification of electrocardiogram (ECG) signals, achieving an impressive accuracy rate of 85.6%. This outcome highlights the device's efficacy in handling real-world signal processing tasks with remarkable precision and efficiency.</p>\n </div>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"37 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an energy-efficient single-transistor leaky integrate-and-fire neuron, based on Suspended Gate-FET (SG-FET), for signal classification and neuromorphic computing applications. By leveraging the SG-FET model, extensive simulations were conducted to demonstrate the device's remarkable neuronal ability. The device faithfully emulated the intricate behaviour of biological neurons, without the need for external circuitry. One of the standout achievements lies in the device's astonishingly low energy consumption of 94.5 aJ per spike. Therefore, it outperforms the previously proposed one-transistor (1-T) neurons, which makes it a potential candidate for energy-efficient neuromorphic computing. To verify the practical viability of the device, an emulation was seamlessly integrated into a spiking neural network framework, allowing for real-time signal classification. In this specific case, the device excelled in the classification of electrocardiogram (ECG) signals, achieving an impressive accuracy rate of 85.6%. This outcome highlights the device's efficacy in handling real-world signal processing tasks with remarkable precision and efficiency.

基于SG-FET的超低能耗尖峰神经元心电信号分类
本文提出了一种基于悬浮栅场效应晶体管(SG-FET)的高能效单晶体管漏积点火神经元,用于信号分类和神经形态计算。通过利用SG-FET模型,进行了大量的模拟,以证明该设备具有卓越的神经元能力。该装置忠实地模拟了生物神经元的复杂行为,而不需要外部电路。其中一个突出的成就在于该器件的能耗低得惊人,每脉冲94.5 aJ。因此,它优于先前提出的单晶体管(1-T)神经元,这使其成为节能神经形态计算的潜在候选者。为了验证该设备的实际可行性,仿真被无缝集成到一个峰值神经网络框架中,允许实时信号分类。在这个特定的案例中,该设备在心电图(ECG)信号的分类方面表现出色,达到了令人印象深刻的85.6%的准确率。这一结果突出了该设备在处理现实世界信号处理任务方面的功效,具有显著的精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
6.20%
发文量
101
审稿时长
>12 weeks
期刊介绍: Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models. The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics. Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信