Numerical Mixing Suppresses Submesoscale Baroclinic Instabilities Over Sloping Bathymetry

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Dylan Schlichting, Robert Hetland, C. Spencer Jones
{"title":"Numerical Mixing Suppresses Submesoscale Baroclinic Instabilities Over Sloping Bathymetry","authors":"Dylan Schlichting,&nbsp;Robert Hetland,&nbsp;C. Spencer Jones","doi":"10.1029/2024MS004321","DOIUrl":null,"url":null,"abstract":"<p>The impacts of spurious numerical salinity mixing <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({\\mathcal{M}}_{\\mathit{num}}\\right)$</annotation>\n </semantics></math> on the larger-scale flow and tracer fields are characterized using idealized simulations. The idealized model is motivated by realistic simulations of the Texas-Louisiana shelf and features oscillatory near-inertial wind forcing. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math> can exceed the physical mixing from the turbulence closure <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>phy</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({\\mathcal{M}}_{\\mathit{phy}}\\right)$</annotation>\n </semantics></math> in frontal zones and within the mixed layer. This suggests that simulated mixing processes in frontal zones are driven largely by <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math>. Near-inertial alongshore wind stress amplitude is varied to identify a base case that maximizes the ratio of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>phy</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{phy}}$</annotation>\n </semantics></math> in simulations with no prescribed horizontal mixing. We then test the sensitivity of the base case with three tracer advection schemes (MPDATA, U3HC4, and HSIMT) and conduct ensemble runs with perturbed bathymetry. Instability growth is evaluated using the volume-integrated eddy kinetic energy <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>E</mi>\n <mi>K</mi>\n <mi>E</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(EKE)$</annotation>\n </semantics></math> and available potential energy <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>A</mi>\n <mi>P</mi>\n <mi>E</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(APE)$</annotation>\n </semantics></math>. While all schemes have similar total mixing, the HSIMT simulations have over double the volume-integrated <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math> and 20% less <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>phy</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{phy}}$</annotation>\n </semantics></math> relative to other schemes, which suppresses the release of <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>P</mi>\n <mi>E</mi>\n </mrow>\n <annotation> $APE$</annotation>\n </semantics></math> and reduces the <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>K</mi>\n <mi>E</mi>\n </mrow>\n <annotation> $EKE$</annotation>\n </semantics></math> by roughly 25%. This results in reduced isohaline variability and steeper isopycnals, evidence that enhanced <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math> suppresses instability growth. Differences in <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>K</mi>\n <mi>E</mi>\n </mrow>\n <annotation> $EKE$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>A</mi>\n <mi>P</mi>\n <mi>E</mi>\n </mrow>\n <annotation> $APE$</annotation>\n </semantics></math> between the MPDATA and U3HC4 simulations are marginal. However, the U3HC4 simulations have 25% more <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math>. Experiments with variable horizontal viscosity and diffusivity coefficients show that small amounts of prescribed horizontal mixing improve the representation of the ocean state for all advection schemes by reducing the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>M</mi>\n </mrow>\n <mi>num</mi>\n </msub>\n </mrow>\n <annotation> ${\\mathcal{M}}_{\\mathit{num}}$</annotation>\n </semantics></math> and increasing the <span></span><math>\n <semantics>\n <mrow>\n <mi>E</mi>\n <mi>K</mi>\n <mi>E</mi>\n </mrow>\n <annotation> $EKE$</annotation>\n </semantics></math>.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004321","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004321","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The impacts of spurious numerical salinity mixing M num $\left({\mathcal{M}}_{\mathit{num}}\right)$ on the larger-scale flow and tracer fields are characterized using idealized simulations. The idealized model is motivated by realistic simulations of the Texas-Louisiana shelf and features oscillatory near-inertial wind forcing. M num ${\mathcal{M}}_{\mathit{num}}$ can exceed the physical mixing from the turbulence closure M phy $\left({\mathcal{M}}_{\mathit{phy}}\right)$ in frontal zones and within the mixed layer. This suggests that simulated mixing processes in frontal zones are driven largely by M num ${\mathcal{M}}_{\mathit{num}}$ . Near-inertial alongshore wind stress amplitude is varied to identify a base case that maximizes the ratio of M num ${\mathcal{M}}_{\mathit{num}}$ to M phy ${\mathcal{M}}_{\mathit{phy}}$ in simulations with no prescribed horizontal mixing. We then test the sensitivity of the base case with three tracer advection schemes (MPDATA, U3HC4, and HSIMT) and conduct ensemble runs with perturbed bathymetry. Instability growth is evaluated using the volume-integrated eddy kinetic energy ( E K E ) $(EKE)$ and available potential energy ( A P E ) $(APE)$ . While all schemes have similar total mixing, the HSIMT simulations have over double the volume-integrated M num ${\mathcal{M}}_{\mathit{num}}$ and 20% less M phy ${\mathcal{M}}_{\mathit{phy}}$ relative to other schemes, which suppresses the release of A P E $APE$ and reduces the E K E $EKE$ by roughly 25%. This results in reduced isohaline variability and steeper isopycnals, evidence that enhanced M num ${\mathcal{M}}_{\mathit{num}}$ suppresses instability growth. Differences in E K E $EKE$ and A P E $APE$ between the MPDATA and U3HC4 simulations are marginal. However, the U3HC4 simulations have 25% more M num ${\mathcal{M}}_{\mathit{num}}$ . Experiments with variable horizontal viscosity and diffusivity coefficients show that small amounts of prescribed horizontal mixing improve the representation of the ocean state for all advection schemes by reducing the M num ${\mathcal{M}}_{\mathit{num}}$ and increasing the E K E $EKE$ .

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信