Sedimentary Environment of the Permian Marine Shale in the Kaijiang-Liangping Trough, Sichuan Basin, China: Implications for Organic Matter (OM) Accumulation
{"title":"Sedimentary Environment of the Permian Marine Shale in the Kaijiang-Liangping Trough, Sichuan Basin, China: Implications for Organic Matter (OM) Accumulation","authors":"Tianfu Gu, Shijia Chen, Xiao Chen, Haofei Sun, Feisheng Mou, Jungang Lu, Xiangdong Yin, Lexin Yuan","doi":"10.1002/gj.5064","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Permian shales in the Kaijiang-Liangping Trough within the Sichuan Basin represent a promising frontier for marine shale gas exploration, whereas there has been limited systematic research on their sedimentary environment and organic matter (OM) enrichment mechanisms. Therefore, we present total organic carbon (TOC) analysis, major/trace element analyses and scanning electron microscope experiments for the Permian marine shales from the trough to determine their paleoenvironmental conditions and influencing factors of OM enrichment. The results show that the paleoclimate changed from dry climate to humid and warm climate (P<sub>3</sub>w<sup>1</sup> [the first member of the Wujiaping Formation]) and semi-humid to semi-arid climate (P<sub>3</sub>w<sup>2</sup> [the second member of the Wujiaping Formation]) and P<sub>3</sub>d-I (Dalong Formation-I) and then to arid climate again during the shale deposition period from the P<sub>2</sub>g (Gufeng Formation) to the P<sub>3</sub>d-II. The shales with the highest TOC contents (TOC > 3%, P<sub>3</sub>d-I and P<sub>2</sub>g), lower TOC contents (TOC < 1%, P<sub>3</sub>w<sup>1</sup> and P<sub>3</sub>w<sup>2</sup>) and higher TOC contents (1% < TOC < 2%, P<sub>3</sub>d-II) were formed under the control of anoxic environment and high paleoproductivity, oxic-suboxic environment and high paleoproductivity, anoxic-euxinic environment and lower productivity, respectively. Only appropriate sedimentation rates promote OM enrichment. Terrestrial input, paleoclimate, volcanic activity and hydrothermal upwelling mainly indirectly affect OM accumulation by influencing paleoproductivity. The degree of redox conditions is the primary factor affecting OM enrichment, followed by paleoproductivity. Nonetheless, anoxic to euxinic environments are most appropriate for OM preservation. Weak volcanic activity can boost paleoproductivity, but severe volcanic activity might introduce excessive harmful compounds that limit organism survival, resulting in a fall in paleoproductivity. Additionally, element P brought by volcanic ashes doesn't contribute to OM accumulation.</p>\n </div>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":"59 12","pages":"3310-3334"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5064","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Permian shales in the Kaijiang-Liangping Trough within the Sichuan Basin represent a promising frontier for marine shale gas exploration, whereas there has been limited systematic research on their sedimentary environment and organic matter (OM) enrichment mechanisms. Therefore, we present total organic carbon (TOC) analysis, major/trace element analyses and scanning electron microscope experiments for the Permian marine shales from the trough to determine their paleoenvironmental conditions and influencing factors of OM enrichment. The results show that the paleoclimate changed from dry climate to humid and warm climate (P3w1 [the first member of the Wujiaping Formation]) and semi-humid to semi-arid climate (P3w2 [the second member of the Wujiaping Formation]) and P3d-I (Dalong Formation-I) and then to arid climate again during the shale deposition period from the P2g (Gufeng Formation) to the P3d-II. The shales with the highest TOC contents (TOC > 3%, P3d-I and P2g), lower TOC contents (TOC < 1%, P3w1 and P3w2) and higher TOC contents (1% < TOC < 2%, P3d-II) were formed under the control of anoxic environment and high paleoproductivity, oxic-suboxic environment and high paleoproductivity, anoxic-euxinic environment and lower productivity, respectively. Only appropriate sedimentation rates promote OM enrichment. Terrestrial input, paleoclimate, volcanic activity and hydrothermal upwelling mainly indirectly affect OM accumulation by influencing paleoproductivity. The degree of redox conditions is the primary factor affecting OM enrichment, followed by paleoproductivity. Nonetheless, anoxic to euxinic environments are most appropriate for OM preservation. Weak volcanic activity can boost paleoproductivity, but severe volcanic activity might introduce excessive harmful compounds that limit organism survival, resulting in a fall in paleoproductivity. Additionally, element P brought by volcanic ashes doesn't contribute to OM accumulation.
期刊介绍:
In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited.
The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.