{"title":"Nonabelian basechange theorems and étale homotopy theory","authors":"Peter J. Haine, Tim Holzschuh, Sebastian Wolf","doi":"10.1112/topo.70009","DOIUrl":null,"url":null,"abstract":"<p>This paper has two main goals. First, we prove nonabelian refinements of basechange theorems in étale cohomology (i.e., prove analogues of the classical statements for sheaves of <i>spaces</i>). Second, we apply these theorems to prove a number of results about the étale homotopy type. Specifically, we prove nonabelian refinements of the smooth basechange theorem, Huber–Gabber affine analogue of the proper basechange theorem, and Fujiwara–Gabber rigidity theorem. Our methods also recover Chough's nonabelian refinement of the proper basechange theorem. Transporting an argument of Bhatt–Mathew to the nonabelian setting, we apply nonabelian proper basechange to show that the profinite étale homotopy type satisfies arc-descent. Using nonabelian smooth and proper basechange and descent, we give rather soft proofs of a number of Künneth formulas for the étale homotopy type.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"17 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/topo.70009","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper has two main goals. First, we prove nonabelian refinements of basechange theorems in étale cohomology (i.e., prove analogues of the classical statements for sheaves of spaces). Second, we apply these theorems to prove a number of results about the étale homotopy type. Specifically, we prove nonabelian refinements of the smooth basechange theorem, Huber–Gabber affine analogue of the proper basechange theorem, and Fujiwara–Gabber rigidity theorem. Our methods also recover Chough's nonabelian refinement of the proper basechange theorem. Transporting an argument of Bhatt–Mathew to the nonabelian setting, we apply nonabelian proper basechange to show that the profinite étale homotopy type satisfies arc-descent. Using nonabelian smooth and proper basechange and descent, we give rather soft proofs of a number of Künneth formulas for the étale homotopy type.
期刊介绍:
The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal.
The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.