{"title":"Wideband beam domain sparse Bayesian learning passive focusing localisation algorithm","authors":"Hao Wang, Hong Zhang, Qiming Ma, Shuanping Du","doi":"10.1049/rsn2.12642","DOIUrl":null,"url":null,"abstract":"<p>To address the challenges of large-aperture sonar systems passive localisation, this paper proposes the application of sparse Bayesian learning (SBL) for passive target localisation in the wideband beam domain. The proposed algorithm aims to overcome the issues of massive computational requirements for two-dimensional SBL scanning and increased localisation errors due to interference energy leakage. The wideband beam domain SBL focusing localisation algorithm is developed by constructing an azimuth-range two-dimensional transformation matrix to preprocess array data, which effectively reduces the computational load of SBL processing while suppressing strong interference energy leakage in passive sonar operating environments, thus improving the range resolution and parameter estimation accuracy of focusing localisation. Simulation and sea trial data analyses demonstrate the feasibility of the proposed algorithm, with results indicating its superior performance compared to existing algorithms.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 11","pages":"2295-2307"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12642","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12642","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To address the challenges of large-aperture sonar systems passive localisation, this paper proposes the application of sparse Bayesian learning (SBL) for passive target localisation in the wideband beam domain. The proposed algorithm aims to overcome the issues of massive computational requirements for two-dimensional SBL scanning and increased localisation errors due to interference energy leakage. The wideband beam domain SBL focusing localisation algorithm is developed by constructing an azimuth-range two-dimensional transformation matrix to preprocess array data, which effectively reduces the computational load of SBL processing while suppressing strong interference energy leakage in passive sonar operating environments, thus improving the range resolution and parameter estimation accuracy of focusing localisation. Simulation and sea trial data analyses demonstrate the feasibility of the proposed algorithm, with results indicating its superior performance compared to existing algorithms.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.