Combined Impacts of Autumn Snow Cover on the Tibetan Plateau and Northeast Asia on the Winter Eurasian Temperature

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
XinHai Chen, XiaoJing Jia, QianJia Xie, Renguang Wu
{"title":"Combined Impacts of Autumn Snow Cover on the Tibetan Plateau and Northeast Asia on the Winter Eurasian Temperature","authors":"XinHai Chen,&nbsp;XiaoJing Jia,&nbsp;QianJia Xie,&nbsp;Renguang Wu","doi":"10.1002/joc.8637","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study explores the combined effects of autumn snow cover anomalies on the Tibetan Plateau (TP) and Northeast Asia (NEA) on winter Eurasian temperature using observational data for the period 1972–2021 and a linear baroclinic model (LBM). Distinctive wintertime temperature patterns are found across the Eurasian continent corresponding to increased autumn snow cover in NEA when TP experiences normal, above-normal, or below-normal snow cover condition. In the scenario with an anomalous increase in autumn snow cover in NEA in combination with normal snow cover condition in TP, the overall winter temperature anomalies tend to be generally weak across the Eurasian continent. In years when autumn TP snow cover is above normal, the spatial distribution of winter temperature anomalies over the Eurasian continent associated with more NEA snow cover exhibits a ‘cold Arctic-warm Eurasia’ (CAWE) pattern. The emergence of this CAWE pattern can be attributed to the low-pressure system induced by the intensified NEA snow cover, which is further reinforced by the atmospheric wave train generated by negative North Atlantic sea surface temperature anomalies (SSTAs) in winter. This low-pressure system amplifies the polar vortex and causes cooling in polar regions. Simultaneously, southeasterly winds along the southwestern flank of the North Pacific high-pressure system contribute to warming in the mid-latitude regions of Eurasia. While in years when autumn snow cover in TP is less than normal, more snow cover over NEA is accompanied by a ‘warm Arctic-cold Eurasia’ (WACE) temperature anomaly pattern prevalent during the winter season. The decrease in autumn Barents-Kara Sea ice is accompanied by a circulation pattern akin to the negative phase of the Arctic Oscillation during winter, favouring the southward intrusion of cold air, thus contributing to this WACE temperature anomaly pattern. Further analysis reveals that the impact of snow cover on the WACE temperature pattern is, for the most part, independent of the Arctic sea ice.</p>\n </div>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 15","pages":"5320-5338"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8637","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the combined effects of autumn snow cover anomalies on the Tibetan Plateau (TP) and Northeast Asia (NEA) on winter Eurasian temperature using observational data for the period 1972–2021 and a linear baroclinic model (LBM). Distinctive wintertime temperature patterns are found across the Eurasian continent corresponding to increased autumn snow cover in NEA when TP experiences normal, above-normal, or below-normal snow cover condition. In the scenario with an anomalous increase in autumn snow cover in NEA in combination with normal snow cover condition in TP, the overall winter temperature anomalies tend to be generally weak across the Eurasian continent. In years when autumn TP snow cover is above normal, the spatial distribution of winter temperature anomalies over the Eurasian continent associated with more NEA snow cover exhibits a ‘cold Arctic-warm Eurasia’ (CAWE) pattern. The emergence of this CAWE pattern can be attributed to the low-pressure system induced by the intensified NEA snow cover, which is further reinforced by the atmospheric wave train generated by negative North Atlantic sea surface temperature anomalies (SSTAs) in winter. This low-pressure system amplifies the polar vortex and causes cooling in polar regions. Simultaneously, southeasterly winds along the southwestern flank of the North Pacific high-pressure system contribute to warming in the mid-latitude regions of Eurasia. While in years when autumn snow cover in TP is less than normal, more snow cover over NEA is accompanied by a ‘warm Arctic-cold Eurasia’ (WACE) temperature anomaly pattern prevalent during the winter season. The decrease in autumn Barents-Kara Sea ice is accompanied by a circulation pattern akin to the negative phase of the Arctic Oscillation during winter, favouring the southward intrusion of cold air, thus contributing to this WACE temperature anomaly pattern. Further analysis reveals that the impact of snow cover on the WACE temperature pattern is, for the most part, independent of the Arctic sea ice.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信