Modeling Global Electron Precipitation Driven by Whistler Mode Waves: Integrating Physical and Deep Learning Approaches

IF 2.6 2区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Sheng Huang, Wen Li, Qianli Ma, Xiao-Chen Shen, Luisa Capannolo, Xiangning Chu
{"title":"Modeling Global Electron Precipitation Driven by Whistler Mode Waves: Integrating Physical and Deep Learning Approaches","authors":"Sheng Huang,&nbsp;Wen Li,&nbsp;Qianli Ma,&nbsp;Xiao-Chen Shen,&nbsp;Luisa Capannolo,&nbsp;Xiangning Chu","doi":"10.1029/2024JA033089","DOIUrl":null,"url":null,"abstract":"<p>Whistler mode waves scatter energetic electrons, causing them to precipitate into the Earth's atmosphere. While the interactions between whistler mode waves and electrons are well understood, the global distribution of electron precipitation driven by whistler mode waves needs futher investigations. We present a two-stage method, integrating neural networks and quasi-linear theory, to simulate global electron precipitation driven by whistler mode waves. By applying this approach to the 17 March 2013 geomagnetic storm event, we reproduce the rapidly varying precipitation pattern over various phases of the storm. Then we validate our simulation results with POES/MetOp satellite observations. The precipitation pattern is consistent between simulations and observations, suggesting that most of the observed electron precipitation can be attributed to scattering by whistler mode waves. Our results indicate that chorus waves drive electron precipitation over the premidnight-to-afternoon sector during the storm main phase, with simulated peak energy fluxes of 20 erg/cm<sup>2</sup>/s and characteristic energies of 10–50 keV. During the recovery phase, plume hiss in the afternoon sector can have a comparable or stronger effect than chorus, with peak fluxes of ∼1 erg/cm<sup>2</sup>/s and characteristic energies between 10 and 200 keV. This study highlights the importance of integrating physics-based and deep learning approaches to model the complex dynamics of electron precipitation driven by whistler mode waves.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033089","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Whistler mode waves scatter energetic electrons, causing them to precipitate into the Earth's atmosphere. While the interactions between whistler mode waves and electrons are well understood, the global distribution of electron precipitation driven by whistler mode waves needs futher investigations. We present a two-stage method, integrating neural networks and quasi-linear theory, to simulate global electron precipitation driven by whistler mode waves. By applying this approach to the 17 March 2013 geomagnetic storm event, we reproduce the rapidly varying precipitation pattern over various phases of the storm. Then we validate our simulation results with POES/MetOp satellite observations. The precipitation pattern is consistent between simulations and observations, suggesting that most of the observed electron precipitation can be attributed to scattering by whistler mode waves. Our results indicate that chorus waves drive electron precipitation over the premidnight-to-afternoon sector during the storm main phase, with simulated peak energy fluxes of 20 erg/cm2/s and characteristic energies of 10–50 keV. During the recovery phase, plume hiss in the afternoon sector can have a comparable or stronger effect than chorus, with peak fluxes of ∼1 erg/cm2/s and characteristic energies between 10 and 200 keV. This study highlights the importance of integrating physics-based and deep learning approaches to model the complex dynamics of electron precipitation driven by whistler mode waves.

Abstract Image

由惠斯勒模式波驱动的全球电子降水建模:整合物理和深度学习方法
惠斯勒模式波散射高能电子,使它们沉淀到地球大气层中。虽然哨声模波与电子之间的相互作用已经得到了很好的理解,但哨声模波驱动的电子沉降的全球分布还需要进一步研究。我们提出了一种结合神经网络和准线性理论的两阶段方法来模拟哨声模式波驱动的全球电子降水。通过将该方法应用于2013年3月17日的地磁风暴事件,我们重现了风暴各个阶段快速变化的降水模式。然后用POES/MetOp卫星观测数据验证了模拟结果。在模拟和观测之间,沉淀模式是一致的,这表明大部分观测到的电子沉淀可归因于哨声模式波的散射。结果表明,在风暴主阶段,副歌波在午夜前至下午扇区驱动电子降水,模拟峰值能量通量为20 erg/cm2/s,特征能量为10-50 keV。在恢复阶段,下午扇区羽流的嘶嘶声可以产生与合唱相当或更强的效果,峰值通量为~ 1 erg/cm2/s,特征能量在10至200 keV之间。这项研究强调了整合基于物理和深度学习的方法来模拟由哨声模式波驱动的电子沉淀的复杂动力学的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics Earth and Planetary Sciences-Geophysics
CiteScore
5.30
自引率
35.70%
发文量
570
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信