{"title":"Modeling Global Electron Precipitation Driven by Whistler Mode Waves: Integrating Physical and Deep Learning Approaches","authors":"Sheng Huang, Wen Li, Qianli Ma, Xiao-Chen Shen, Luisa Capannolo, Xiangning Chu","doi":"10.1029/2024JA033089","DOIUrl":null,"url":null,"abstract":"<p>Whistler mode waves scatter energetic electrons, causing them to precipitate into the Earth's atmosphere. While the interactions between whistler mode waves and electrons are well understood, the global distribution of electron precipitation driven by whistler mode waves needs futher investigations. We present a two-stage method, integrating neural networks and quasi-linear theory, to simulate global electron precipitation driven by whistler mode waves. By applying this approach to the 17 March 2013 geomagnetic storm event, we reproduce the rapidly varying precipitation pattern over various phases of the storm. Then we validate our simulation results with POES/MetOp satellite observations. The precipitation pattern is consistent between simulations and observations, suggesting that most of the observed electron precipitation can be attributed to scattering by whistler mode waves. Our results indicate that chorus waves drive electron precipitation over the premidnight-to-afternoon sector during the storm main phase, with simulated peak energy fluxes of 20 erg/cm<sup>2</sup>/s and characteristic energies of 10–50 keV. During the recovery phase, plume hiss in the afternoon sector can have a comparable or stronger effect than chorus, with peak fluxes of ∼1 erg/cm<sup>2</sup>/s and characteristic energies between 10 and 200 keV. This study highlights the importance of integrating physics-based and deep learning approaches to model the complex dynamics of electron precipitation driven by whistler mode waves.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"129 12","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JA033089","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JA033089","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Whistler mode waves scatter energetic electrons, causing them to precipitate into the Earth's atmosphere. While the interactions between whistler mode waves and electrons are well understood, the global distribution of electron precipitation driven by whistler mode waves needs futher investigations. We present a two-stage method, integrating neural networks and quasi-linear theory, to simulate global electron precipitation driven by whistler mode waves. By applying this approach to the 17 March 2013 geomagnetic storm event, we reproduce the rapidly varying precipitation pattern over various phases of the storm. Then we validate our simulation results with POES/MetOp satellite observations. The precipitation pattern is consistent between simulations and observations, suggesting that most of the observed electron precipitation can be attributed to scattering by whistler mode waves. Our results indicate that chorus waves drive electron precipitation over the premidnight-to-afternoon sector during the storm main phase, with simulated peak energy fluxes of 20 erg/cm2/s and characteristic energies of 10–50 keV. During the recovery phase, plume hiss in the afternoon sector can have a comparable or stronger effect than chorus, with peak fluxes of ∼1 erg/cm2/s and characteristic energies between 10 and 200 keV. This study highlights the importance of integrating physics-based and deep learning approaches to model the complex dynamics of electron precipitation driven by whistler mode waves.