{"title":"Development of an HPLC–UV method for quantification of posaconazole in low-volume plasma samples: design of experiments and machine learning models","authors":"Fereshteh Bayat, Ali Hashemi Baghi, Zahra Abbasian, Simin Dadashzadeh, Reza Aboofazeli, Azadeh Haeri","doi":"10.1186/s13065-024-01349-2","DOIUrl":null,"url":null,"abstract":"<div><p>Posaconazole (PCZ) is a triazole antifungal agent with a broad-spectrum activity. Our research aims to present a novel approach by combining a 2-level fractional factorial design and machine learning to optimize both chromatography and extraction experiments, allowing for the development of a rapid method with a low limit of quantification (LOQ) in low-volume plasma samples. The PCZ retention time at the optimized condition (organic phase 58%, methanol 6%, mobile pH = 7, column temperature: 39 °C, and flow rate of 1.2 mL/min) was found to be 8.2 ± 0.2 min, and the recovery of the PCZ at the optimized extraction condition (500 µL extraction solvent, NaCl 10% w/v, plasma pH = 11, extraction time = 10 min, and centrifuge time = 1 min) was calculated above 98%. The results of machine learning models were in line with the results of experimental design. Method validation was performed according to ICH guideline. The method was linear in the range of 50–2000 ng/mL and LOQ was found to be 50 ng/mL. Additionally, the validated method was applied to analyze PCZ nanomicelles and conduct pharmacokinetic studies on rats. Half-life (t<sub>1/2</sub>), mean residence time (MRT), and the area under the drug concentration–time curve (AUC) were found to be 7.1 ± 0.6 h, 10.5 ± 0.9 h, and 1725.7 ± 44.1 ng × h/mL, respectively.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":496,"journal":{"name":"BMC Chemistry","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bmcchem.biomedcentral.com/counter/pdf/10.1186/s13065-024-01349-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13065-024-01349-2","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Posaconazole (PCZ) is a triazole antifungal agent with a broad-spectrum activity. Our research aims to present a novel approach by combining a 2-level fractional factorial design and machine learning to optimize both chromatography and extraction experiments, allowing for the development of a rapid method with a low limit of quantification (LOQ) in low-volume plasma samples. The PCZ retention time at the optimized condition (organic phase 58%, methanol 6%, mobile pH = 7, column temperature: 39 °C, and flow rate of 1.2 mL/min) was found to be 8.2 ± 0.2 min, and the recovery of the PCZ at the optimized extraction condition (500 µL extraction solvent, NaCl 10% w/v, plasma pH = 11, extraction time = 10 min, and centrifuge time = 1 min) was calculated above 98%. The results of machine learning models were in line with the results of experimental design. Method validation was performed according to ICH guideline. The method was linear in the range of 50–2000 ng/mL and LOQ was found to be 50 ng/mL. Additionally, the validated method was applied to analyze PCZ nanomicelles and conduct pharmacokinetic studies on rats. Half-life (t1/2), mean residence time (MRT), and the area under the drug concentration–time curve (AUC) were found to be 7.1 ± 0.6 h, 10.5 ± 0.9 h, and 1725.7 ± 44.1 ng × h/mL, respectively.
期刊介绍:
BMC Chemistry, formerly known as Chemistry Central Journal, is now part of the BMC series journals family.
Chemistry Central Journal has served the chemistry community as a trusted open access resource for more than 10 years – and we are delighted to announce the next step on its journey. In January 2019 the journal has been renamed BMC Chemistry and now strengthens the BMC series footprint in the physical sciences by publishing quality articles and by pushing the boundaries of open chemistry.