Photo-thermo-acoustic waves interaction for nanostructured rotational semiconductor material subjected to laser pulse

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Kh. Lotfy, Ibrahim S. Elshazly, Borhen Halouani, Praveen Ailawalia, Alaa A. El-Bary
{"title":"Photo-thermo-acoustic waves interaction for nanostructured rotational semiconductor material subjected to laser pulse","authors":"Kh. Lotfy,&nbsp;Ibrahim S. Elshazly,&nbsp;Borhen Halouani,&nbsp;Praveen Ailawalia,&nbsp;Alaa A. El-Bary","doi":"10.1140/epjb/s10051-024-00830-0","DOIUrl":null,"url":null,"abstract":"<div><p>This research investigates the influence of rotation on the propagation of optical acoustic waves caused by the motion of an optical carrier in an elastic thermal environment. The study employs theoretical analysis to derive governing equations tailored to a nonlocal semiconductor medium, incorporating the interaction between acoustic waves and thermomechanics. The foundational equations of the model, influenced by photothermal and thermoelastic principles, are mathematically derived when the microstructure of the medium is taken into consideration while accounting for rotation. The model explores the medium's response to a thermal ramp originating from light-induced temperature elevation. The mathematical model is solvable in two-dimensional (2D) using the normal mode method, and numerical solutions offer insights into various physical fields, such as displacements, temperature, acoustic pressure, mechanical distributions, and carrier density diffusion. Employing the harmonic wave method, some graphical representations of the rotation parameter are obtained, both with and without the influence of the nonlocal parameter. Theoretical analysis includes a comprehensive examination, comparison, and discussion of the effects of these parameters on the system subjected to ramp-type heating.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":787,"journal":{"name":"The European Physical Journal B","volume":"97 12","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjb/s10051-024-00830-0","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This research investigates the influence of rotation on the propagation of optical acoustic waves caused by the motion of an optical carrier in an elastic thermal environment. The study employs theoretical analysis to derive governing equations tailored to a nonlocal semiconductor medium, incorporating the interaction between acoustic waves and thermomechanics. The foundational equations of the model, influenced by photothermal and thermoelastic principles, are mathematically derived when the microstructure of the medium is taken into consideration while accounting for rotation. The model explores the medium's response to a thermal ramp originating from light-induced temperature elevation. The mathematical model is solvable in two-dimensional (2D) using the normal mode method, and numerical solutions offer insights into various physical fields, such as displacements, temperature, acoustic pressure, mechanical distributions, and carrier density diffusion. Employing the harmonic wave method, some graphical representations of the rotation parameter are obtained, both with and without the influence of the nonlocal parameter. Theoretical analysis includes a comprehensive examination, comparison, and discussion of the effects of these parameters on the system subjected to ramp-type heating.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal B
The European Physical Journal B 物理-物理:凝聚态物理
CiteScore
2.80
自引率
6.20%
发文量
184
审稿时长
5.1 months
期刊介绍: Solid State and Materials; Mesoscopic and Nanoscale Systems; Computational Methods; Statistical and Nonlinear Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信