Higher Symmetries of Lattices in 3D

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Ismagil T. Habibullin, Aigul R. Khakimova
{"title":"Higher Symmetries of Lattices in 3D","authors":"Ismagil T. Habibullin,&nbsp;Aigul R. Khakimova","doi":"10.1134/S1560354724060017","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that there is a duality between the Davey – Stewartson type coupled systems and a class of integrable two-dimensional Toda type lattices. More precisely, the coupled systems are generalized symmetries for the lattices and the lattices can be interpreted as dressing chains for the systems. In our recent study we have found a novel lattice which is apparently not related to the known ones by Miura type transformation. In this article we describe higher symmetries to this lattice and derive a new coupled system of DS type.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"29 6","pages":"853 - 865"},"PeriodicalIF":0.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354724060017","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that there is a duality between the Davey – Stewartson type coupled systems and a class of integrable two-dimensional Toda type lattices. More precisely, the coupled systems are generalized symmetries for the lattices and the lattices can be interpreted as dressing chains for the systems. In our recent study we have found a novel lattice which is apparently not related to the known ones by Miura type transformation. In this article we describe higher symmetries to this lattice and derive a new coupled system of DS type.

三维网格的更高对称性
已知在Davey - Stewartson型耦合系统和一类二维可积Toda型格之间存在对偶性。更准确地说,耦合系统是晶格的广义对称性,晶格可以解释为系统的修整链。在我们最近的研究中,我们通过Miura型变换发现了一个与已知晶格明显无关的新晶格。在本文中,我们描述了这种晶格的高对称性,并推导了一种新的DS型耦合系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信