Urease Inhibitors Weaken the Efficiency of Nitrification Inhibitors in Mitigating N2O Emissions from Soils Irrigated with Alternative Water Resources

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Zhen Tao, Zhongyang Li, Siyi Li, Lijuan Zhao, Andrew S. Gregory, Xiangyang Fan, Chuncheng Liu, Chao Hu, Yuan Liu
{"title":"Urease Inhibitors Weaken the Efficiency of Nitrification Inhibitors in Mitigating N2O Emissions from Soils Irrigated with Alternative Water Resources","authors":"Zhen Tao,&nbsp;Zhongyang Li,&nbsp;Siyi Li,&nbsp;Lijuan Zhao,&nbsp;Andrew S. Gregory,&nbsp;Xiangyang Fan,&nbsp;Chuncheng Liu,&nbsp;Chao Hu,&nbsp;Yuan Liu","doi":"10.1007/s11270-024-07670-9","DOIUrl":null,"url":null,"abstract":"<div><p>It is generally accepted that inhibitors are effective in reducing agricultural nitrous oxide (N<sub>2</sub>O) emissions from soils irrigated by groundwater. However, it was unclear whether these inhibitors effectively regulate N<sub>2</sub>O emissions from soils irrigated with alternative waters, like reclaimed water and livestock wastewater. To clarify this, nitrapyrin, a nitrification inhibitor, and N-(N-butyl) thiophosphoric triamide, a urease inhibitor, were added separately or jointly to the soils irrigated by groundwater, reclaimed water and livestock wastewater through two consecutive cycles of pot experiment. Both the single and combined addition of inhibitors lowered N<sub>2</sub>O emissions from soils irrigated with alternative water, while the reduction effect of the combined application decreased relative to that of the single application. The using of combined inhibitors did reduce the enrichment level of nitrification genes and slow down the nitrification process, but the associated relatively high <i>nirS</i>/<i>nosZ</i> ratio potentially discounted its ability to prevent N<sub>2</sub>O emissions. Whereas under groundwater irrigation, treatment with combined inhibitors only decreased N<sub>2</sub>O emissions in the first cycle but not in the second cycle. Inhibitor application affected the composition of soil bacterial communities, and in particular, urease inhibitor application increased community differences across the two cycles. Moreover, using inhibitors led to a general reduction in the enrichment level of the denitrification genes <i>narG</i> and <i>nosZ</i>, and we speculate that inhibitors could also indirectly manipulate N<sub>2</sub>O release by involving the denitrification process. Structural equation model results further displayed that the relative abundance of the <i>nxrA</i> and <i>narG</i> genes and NH<sub>4</sub><sup>+</sup>-N concentration played a vital role in the regulation of N<sub>2</sub>O release from the alternative water-irrigated soils applied with inhibitors.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07670-9","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

It is generally accepted that inhibitors are effective in reducing agricultural nitrous oxide (N2O) emissions from soils irrigated by groundwater. However, it was unclear whether these inhibitors effectively regulate N2O emissions from soils irrigated with alternative waters, like reclaimed water and livestock wastewater. To clarify this, nitrapyrin, a nitrification inhibitor, and N-(N-butyl) thiophosphoric triamide, a urease inhibitor, were added separately or jointly to the soils irrigated by groundwater, reclaimed water and livestock wastewater through two consecutive cycles of pot experiment. Both the single and combined addition of inhibitors lowered N2O emissions from soils irrigated with alternative water, while the reduction effect of the combined application decreased relative to that of the single application. The using of combined inhibitors did reduce the enrichment level of nitrification genes and slow down the nitrification process, but the associated relatively high nirS/nosZ ratio potentially discounted its ability to prevent N2O emissions. Whereas under groundwater irrigation, treatment with combined inhibitors only decreased N2O emissions in the first cycle but not in the second cycle. Inhibitor application affected the composition of soil bacterial communities, and in particular, urease inhibitor application increased community differences across the two cycles. Moreover, using inhibitors led to a general reduction in the enrichment level of the denitrification genes narG and nosZ, and we speculate that inhibitors could also indirectly manipulate N2O release by involving the denitrification process. Structural equation model results further displayed that the relative abundance of the nxrA and narG genes and NH4+-N concentration played a vital role in the regulation of N2O release from the alternative water-irrigated soils applied with inhibitors.

Graphical Abstract

脲酶抑制剂削弱了硝化抑制剂在替代水资源灌溉土壤中减少N2O排放的效率
人们普遍认为,抑制剂在减少地下水灌溉土壤的农业氧化亚氮(N2O)排放方面是有效的。然而,目前尚不清楚这些抑制剂是否能有效调节用再生水和牲畜废水等替代水灌溉的土壤中N2O的排放。为此,通过连续两个循环盆栽试验,分别或联合向地下水、再生水和畜禽废水灌溉的土壤中添加硝化抑制剂nitrapyrin和脲酶抑制剂N-(N-丁基)硫磷三酰胺。缓蚀剂单独施用和联合施用均降低了替代水灌溉土壤N2O的排放,但联合施用的减少效果相对于单独施用有所下降。联合抑制剂的使用确实降低了硝化基因的富集水平,减缓了硝化过程,但相关的相对较高的nirS/nosZ比率可能会降低其防止N2O排放的能力。而在地下水灌溉条件下,联合抑制剂处理仅在第一个循环中减少了N2O的排放,而在第二个循环中没有减少。抑制剂的施用影响了土壤细菌群落的组成,特别是脲酶抑制剂的施用增加了两个循环之间的群落差异。此外,使用抑制剂导致反硝化基因narG和nosZ的富集水平普遍降低,我们推测抑制剂还可以通过参与反硝化过程间接控制N2O的释放。结构方程模型结果进一步表明,nxrA和narG基因的相对丰度以及NH4+-N浓度对施用抑制剂的交替灌溉土壤N2O释放起着至关重要的调节作用。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信