All-optical photonic crystal logic gates and functions based on threshold logic

IF 2.2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Arash Firouzimoghaddam, Hojjat Sharifi
{"title":"All-optical photonic crystal logic gates and functions based on threshold logic","authors":"Arash Firouzimoghaddam,&nbsp;Hojjat Sharifi","doi":"10.1007/s10825-024-02256-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel photonic crystal structure for designing all-optical photonic crystal logic gates and functions based on threshold logic concept. The structure offers two- and three-input AND/NAND logic gates as well as three-input majority/minority functions. In this method, the summation of inputs values connects to a threshold detector with varying threshold values in order to achieve different logic gates and functions. Furthermore, the impact of variations in the diameter and position of rods on the performance of the proposed structures has been examined. Simulation results demonstrate the successful operation of the proposed structures even in the presence of 14% variation in rod diameter, indicating that the presented logic gates exhibit minimal sensitivity to process variations. The finite difference time domain method was used to evaluate the performance of the proposed structures with a switching power requirement of is 2.5 W.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02256-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel photonic crystal structure for designing all-optical photonic crystal logic gates and functions based on threshold logic concept. The structure offers two- and three-input AND/NAND logic gates as well as three-input majority/minority functions. In this method, the summation of inputs values connects to a threshold detector with varying threshold values in order to achieve different logic gates and functions. Furthermore, the impact of variations in the diameter and position of rods on the performance of the proposed structures has been examined. Simulation results demonstrate the successful operation of the proposed structures even in the presence of 14% variation in rod diameter, indicating that the presented logic gates exhibit minimal sensitivity to process variations. The finite difference time domain method was used to evaluate the performance of the proposed structures with a switching power requirement of is 2.5 W.

基于阈值逻辑的全光光子晶体逻辑门和功能
本文提出了一种基于阈值逻辑概念设计全光光子晶体逻辑门和功能的新型光子晶体结构。该结构提供两个和三个输入and /NAND逻辑门以及三个输入多数/少数功能。在该方法中,输入值的总和连接到具有不同阈值的阈值检测器,以实现不同的逻辑门和功能。此外,还研究了杆的直径和位置变化对所提出结构性能的影响。仿真结果表明,即使存在14%的杆径变化,所提出的结构也能成功运行,这表明所提出的逻辑门对工艺变化的敏感性最小。采用时域有限差分法对开关功率要求为2.5 W的结构进行了性能评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信