Arshdeep Kaur, Harpreet Kaur, Sanjeev Kumar, Prit Pal Singh, Kanchan Bala, Supreet, Sunil Kumar, Jyoti Gaur, Sandeep Kaushal, Gautam Singh
{"title":"Crafting Superior Photocatalytic Potential: Synergistic Precipitation-Hydrothermal Customization of CTAB-Engineered Co3O4 Nanoparticles","authors":"Arshdeep Kaur, Harpreet Kaur, Sanjeev Kumar, Prit Pal Singh, Kanchan Bala, Supreet, Sunil Kumar, Jyoti Gaur, Sandeep Kaushal, Gautam Singh","doi":"10.1007/s10876-024-02719-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces CTAB-loaded Co₃O₄ nanoparticles (NPs) as a highly efficient solution for removing Brilliant Yellow (BY), Reactive Yellow (RY) and Methyl Orange (MO) dye from contaminated water. Synthesized via a co-precipitation and hydrothermal method, these NPs were characterized using UV-Vis, FTIR, XRD, TEM, and SEM. The Co₃O₄ NPs, with a crystallite size of 11.88 nm and an average particle size of 13 nm, achieved 100% photocatalytic degradation of BY dye (120 mg/L) within 140 min. Additionally, the NPs demonstrated promising photocatalytic activity against RY and MO dyes. The synergy between CTAB and Co₃O₄ NPs enhances dye degradation, positioning them as a cost-effective and efficient solution for wastewater treatment. This work highlights the environmental potential of CTAB/Co₃O₄ NPs in addressing water pollution challenges.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-024-02719-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces CTAB-loaded Co₃O₄ nanoparticles (NPs) as a highly efficient solution for removing Brilliant Yellow (BY), Reactive Yellow (RY) and Methyl Orange (MO) dye from contaminated water. Synthesized via a co-precipitation and hydrothermal method, these NPs were characterized using UV-Vis, FTIR, XRD, TEM, and SEM. The Co₃O₄ NPs, with a crystallite size of 11.88 nm and an average particle size of 13 nm, achieved 100% photocatalytic degradation of BY dye (120 mg/L) within 140 min. Additionally, the NPs demonstrated promising photocatalytic activity against RY and MO dyes. The synergy between CTAB and Co₃O₄ NPs enhances dye degradation, positioning them as a cost-effective and efficient solution for wastewater treatment. This work highlights the environmental potential of CTAB/Co₃O₄ NPs in addressing water pollution challenges.
期刊介绍:
The journal publishes the following types of papers: (a) original and important research;
(b) authoritative comprehensive reviews or short overviews of topics of current
interest; (c) brief but urgent communications on new significant research; and (d)
commentaries intended to foster the exchange of innovative or provocative ideas, and
to encourage dialogue, amongst researchers working in different cluster
disciplines.