{"title":"Structure-performance relationship of additive-incorporated tetraethylenepentamine-functionalized SiO2 in direct air capture of CO2","authors":"Zuoyan Yang, Yuqi Zhou, Hongjie Cui, Zhenmin Cheng, Zhiming Zhou","doi":"10.1007/s11705-024-2512-3","DOIUrl":null,"url":null,"abstract":"<div><p>Direct air capture (DAC) using amine-functionalized solid adsorbents holds promise for achieving negative carbon emissions. In this study, a series of additive-incorporated tetraethylenepentamine-functionalized SiO<sub>2</sub> adsorbents with varying tetraethylenepentamine and additive contents were prepared via a simple impregnation method, characterized by various techniques, and applied in the DAC process. The structure-performance relationship of these adsorbents in DAC was investigated, revealing that the quantity of active amine sites (or the tetraethylenepentamine content in the exposed layer), as determined by CO<sub>2</sub>-TPD measurement, was an important factor affecting the adsorbent performance. This factor, which varied with the tetraethylenepentamine content, additive type, and additive content, showed a positive correlation with the CO<sub>2</sub> adsorption capacity of the adsorbents. The optimal adsorbent, 40TEPA-10PEG/SiO<sub>2</sub> containing 40 wt % tetraethylenepentamine and 10 wt % polyethylene glycol (Mn = 200), exhibited a stable CO<sub>2</sub> capacity of 2.1 mmol·g<sup>−1</sup> and amine efficiency of 0.22 over 20 adsorption–desorption cycles (adsorption at 400 ppm CO<sub>2</sub>/N<sub>2</sub> and 30 °C for 60 min, and desorption at pure N<sub>2</sub> and 90 °C for 20 min). Moreover, even after deliberate accelerated oxidation treatment (pretreated in air at 100 °C for 10 h), the CO<sub>2</sub> capacity of 40TEPA-10PEG/SiO<sub>2</sub> remained at 2.0 mmol·g<sup>−1</sup>. The superior thermal and oxidative stability of 40TEPA-10PEG/SiO<sub>2</sub> makes it a promising adsorbent for DAC applications.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2512-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Direct air capture (DAC) using amine-functionalized solid adsorbents holds promise for achieving negative carbon emissions. In this study, a series of additive-incorporated tetraethylenepentamine-functionalized SiO2 adsorbents with varying tetraethylenepentamine and additive contents were prepared via a simple impregnation method, characterized by various techniques, and applied in the DAC process. The structure-performance relationship of these adsorbents in DAC was investigated, revealing that the quantity of active amine sites (or the tetraethylenepentamine content in the exposed layer), as determined by CO2-TPD measurement, was an important factor affecting the adsorbent performance. This factor, which varied with the tetraethylenepentamine content, additive type, and additive content, showed a positive correlation with the CO2 adsorption capacity of the adsorbents. The optimal adsorbent, 40TEPA-10PEG/SiO2 containing 40 wt % tetraethylenepentamine and 10 wt % polyethylene glycol (Mn = 200), exhibited a stable CO2 capacity of 2.1 mmol·g−1 and amine efficiency of 0.22 over 20 adsorption–desorption cycles (adsorption at 400 ppm CO2/N2 and 30 °C for 60 min, and desorption at pure N2 and 90 °C for 20 min). Moreover, even after deliberate accelerated oxidation treatment (pretreated in air at 100 °C for 10 h), the CO2 capacity of 40TEPA-10PEG/SiO2 remained at 2.0 mmol·g−1. The superior thermal and oxidative stability of 40TEPA-10PEG/SiO2 makes it a promising adsorbent for DAC applications.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.