Fe3O4@C magnetite nanocomposite: an artificial peroxidase nanozyme for the development of a colorimetric glucose biosensor†

IF 2.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Hoang V. Tran, Nghia D. Nguyen, Anh-Tuan Le, Luyen T. Tran, Thu D. Le and Chinh D. Huynh
{"title":"Fe3O4@C magnetite nanocomposite: an artificial peroxidase nanozyme for the development of a colorimetric glucose biosensor†","authors":"Hoang V. Tran, Nghia D. Nguyen, Anh-Tuan Le, Luyen T. Tran, Thu D. Le and Chinh D. Huynh","doi":"10.1039/D4NJ03808H","DOIUrl":null,"url":null,"abstract":"<p >Horseradish peroxidase (HRP), a natural enzyme, consists of a Fe<small><sup>III</sup></small> ion, which plays the role as an active center of the enzyme, wherein the binding of H<small><sub>2</sub></small>O<small><sub>2</sub></small> to the Fe<small><sup>III</sup></small> ion creates an octahedral configuration around Fe<small><sup>III</sup></small>, leading to the decomposition of the –O–O– bond of H<small><sub>2</sub></small>O<small><sub>2</sub></small>. Based on this considering, here, we propose amorphous-carbon-functionalized Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles (Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@C) that serve as a peroxidase nanozyme with Fe<small><sup>III</sup></small> and exhibits peroxidase-like catalytic activity. In this work, Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@C was synthesized <em>via</em> a simple hydrothermal process from a suspension of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small> nanoparticles and glucose solution. The peroxidase-mimicking activity of Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@C was demonstrated following the Michaelis–Menten and Lineweaver–Burk equations of the enzymatic model. At optimized conditions, Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@C showed stronger catalytic activity than HRP, with Michaelis–Menten constants (<em>K</em><small><sub>m</sub></small>) 0.052 mM and 0.004 mM for the H<small><sub>2</sub></small>O<small><sub>2</sub></small> substrate and TMB co-substrate, respectively. Using Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>@C as a replacement for HRP, a colorimetric chemical sensor for H<small><sub>2</sub></small>O<small><sub>2</sub></small> sensing and a colorimetric biosensor for glucose detection were constructed, and they exhibited high selectivity and sensitivity with an LOD of 20 μM for H<small><sub>2</sub></small>O<small><sub>2</sub></small> and 40 μM for glucose. The applicability of the glucose biosensor was also tested in real samples, including a 5% intravenous glucose solution and human blood serum, revealing high recovery rates.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 47","pages":" 20007-20017"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nj/d4nj03808h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Horseradish peroxidase (HRP), a natural enzyme, consists of a FeIII ion, which plays the role as an active center of the enzyme, wherein the binding of H2O2 to the FeIII ion creates an octahedral configuration around FeIII, leading to the decomposition of the –O–O– bond of H2O2. Based on this considering, here, we propose amorphous-carbon-functionalized Fe3O4 nanoparticles (Fe3O4@C) that serve as a peroxidase nanozyme with FeIII and exhibits peroxidase-like catalytic activity. In this work, Fe3O4@C was synthesized via a simple hydrothermal process from a suspension of Fe3O4 nanoparticles and glucose solution. The peroxidase-mimicking activity of Fe3O4@C was demonstrated following the Michaelis–Menten and Lineweaver–Burk equations of the enzymatic model. At optimized conditions, Fe3O4@C showed stronger catalytic activity than HRP, with Michaelis–Menten constants (Km) 0.052 mM and 0.004 mM for the H2O2 substrate and TMB co-substrate, respectively. Using Fe3O4@C as a replacement for HRP, a colorimetric chemical sensor for H2O2 sensing and a colorimetric biosensor for glucose detection were constructed, and they exhibited high selectivity and sensitivity with an LOD of 20 μM for H2O2 and 40 μM for glucose. The applicability of the glucose biosensor was also tested in real samples, including a 5% intravenous glucose solution and human blood serum, revealing high recovery rates.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
New Journal of Chemistry
New Journal of Chemistry 化学-化学综合
CiteScore
5.30
自引率
6.10%
发文量
1832
审稿时长
2 months
期刊介绍: A journal for new directions in chemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信