Highly efficient top-emitting green phosphorescent OLEDs with a narrow band and slow efficiency roll-off for high-definition displays†

IF 6 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jun Wang, Fanmin Meng, Weijian Liu, Zhaochao Zhang and Jiuyan Li
{"title":"Highly efficient top-emitting green phosphorescent OLEDs with a narrow band and slow efficiency roll-off for high-definition displays†","authors":"Jun Wang, Fanmin Meng, Weijian Liu, Zhaochao Zhang and Jiuyan Li","doi":"10.1039/D4QM00779D","DOIUrl":null,"url":null,"abstract":"<p >High-definition displays commonly require narrow-band spectra, stability and high efficiency, especially under high brightness. Two ambipolar hosts were developed with xanthone and dibenzofuran as binary n-type units and carbazole as a p-type unit, which showed glass transition temperatures over 140 °C and triplet energies of 2.8 eV. They were used as hosts for tris(2-phenylpyridine)iridium (Ir(ppy)<small><sub>3</sub></small>) to fabricate top-emission green-phosphorescent organic light-emitting diodes (PhOLEDs). Owing to the strengthened microcavity effect and favorable optoelectronic features of the host materials, the green PhOLEDs exhibited low turn-on voltages of 1.97 and 1.85 V and a narrow full width at half maximum (FWHM) of 28 nm. Furthermore, the maximum current efficiency (CE) and power efficiency (PE) reached as high as 183.1 cd A<small><sup>−1</sup></small> and 247.3 lm W<small><sup>−1</sup></small>, respectively. More importantly, even at an ultra-high brightness of 66 000 cd m<small><sup>−2</sup></small>, the efficiencies were maintained at 132.2 cd A<small><sup>−1</sup></small> and 68.2 lm W<small><sup>−1</sup></small> and surpassed many similar devices reported previously. In comparison with the prevailing multi-resonance thermally activated delayed-fluorescence (TADF) OLEDs, these top-emitting PhOLEDs were comparable in terms of extremely high efficiency and narrow-band color purity but superior in terms of their exceptional efficiency stability, high brightness, and facile synthesis, all of which make them suitable for practical application in high-definition displays.</p>","PeriodicalId":86,"journal":{"name":"Materials Chemistry Frontiers","volume":" 24","pages":" 4106-4113"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry Frontiers","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/qm/d4qm00779d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-definition displays commonly require narrow-band spectra, stability and high efficiency, especially under high brightness. Two ambipolar hosts were developed with xanthone and dibenzofuran as binary n-type units and carbazole as a p-type unit, which showed glass transition temperatures over 140 °C and triplet energies of 2.8 eV. They were used as hosts for tris(2-phenylpyridine)iridium (Ir(ppy)3) to fabricate top-emission green-phosphorescent organic light-emitting diodes (PhOLEDs). Owing to the strengthened microcavity effect and favorable optoelectronic features of the host materials, the green PhOLEDs exhibited low turn-on voltages of 1.97 and 1.85 V and a narrow full width at half maximum (FWHM) of 28 nm. Furthermore, the maximum current efficiency (CE) and power efficiency (PE) reached as high as 183.1 cd A−1 and 247.3 lm W−1, respectively. More importantly, even at an ultra-high brightness of 66 000 cd m−2, the efficiencies were maintained at 132.2 cd A−1 and 68.2 lm W−1 and surpassed many similar devices reported previously. In comparison with the prevailing multi-resonance thermally activated delayed-fluorescence (TADF) OLEDs, these top-emitting PhOLEDs were comparable in terms of extremely high efficiency and narrow-band color purity but superior in terms of their exceptional efficiency stability, high brightness, and facile synthesis, all of which make them suitable for practical application in high-definition displays.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry Frontiers
Materials Chemistry Frontiers Materials Science-Materials Chemistry
CiteScore
12.00
自引率
2.90%
发文量
313
期刊介绍: Materials Chemistry Frontiers focuses on the synthesis and chemistry of exciting new materials, and the development of improved fabrication techniques. Characterisation and fundamental studies that are of broad appeal are also welcome. This is the ideal home for studies of a significant nature that further the development of organic, inorganic, composite and nano-materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信