Zhongliang Chen, Chao Sun, Hong Wei Qiao, Jiyuan Chen, Xuelu Wang and Yefeng Yao
{"title":"Efficient and stable perovskite solar cells via surface defect passivation using 4-fluorobenzamine trifluoroacetate†","authors":"Zhongliang Chen, Chao Sun, Hong Wei Qiao, Jiyuan Chen, Xuelu Wang and Yefeng Yao","doi":"10.1039/D4SE00473F","DOIUrl":null,"url":null,"abstract":"<p >Perovskite solar cells (PSCs) have achieved high power conversion efficiencies (PCEs). However, surface defects present a major challenge to further improving their performance. Fluorine-substituted materials have been widely utilized to passivate surface defects and improve the photovoltaic performance and stability of PSCs. In this study, post-treatment of the methylamine-lead iodide (MAPbI<small><sub>3</sub></small>) perovskite surface was performed using 4-fluoroaniline trifluoroacetate (P-F-PMATFA), and the surface defects of the perovskite were passivated <em>via</em> an F atom, which reduced the energy barrier between the perovskite film (PVK) and hole transport layer (HTL). Consequently, the PCE of P-F-PMATFA treated solar cells based on the MAPbI<small><sub>3</sub></small> perovskite increased from 19.19 to 21.01% with low open-circuit voltage (<em>V</em><small><sub>OC</sub></small>) loss (0.44 V). Further, P-F-PMATFA treated perovskite devices exhibited long-term stability, owing to the higher hydrophobicity of fluorinated materials. The post-treatment strategy demonstrated in this study shows wide application potential in the field of photovoltaic devices owing to its ability to passivate surface defects and improve material stability.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 24","pages":" 5917-5926"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00473f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Perovskite solar cells (PSCs) have achieved high power conversion efficiencies (PCEs). However, surface defects present a major challenge to further improving their performance. Fluorine-substituted materials have been widely utilized to passivate surface defects and improve the photovoltaic performance and stability of PSCs. In this study, post-treatment of the methylamine-lead iodide (MAPbI3) perovskite surface was performed using 4-fluoroaniline trifluoroacetate (P-F-PMATFA), and the surface defects of the perovskite were passivated via an F atom, which reduced the energy barrier between the perovskite film (PVK) and hole transport layer (HTL). Consequently, the PCE of P-F-PMATFA treated solar cells based on the MAPbI3 perovskite increased from 19.19 to 21.01% with low open-circuit voltage (VOC) loss (0.44 V). Further, P-F-PMATFA treated perovskite devices exhibited long-term stability, owing to the higher hydrophobicity of fluorinated materials. The post-treatment strategy demonstrated in this study shows wide application potential in the field of photovoltaic devices owing to its ability to passivate surface defects and improve material stability.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.