Catechin-induced cellulose: a new material for harvesting triboelectricity

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
P. A. Hisna and P. P. Pradyumnan
{"title":"Catechin-induced cellulose: a new material for harvesting triboelectricity","authors":"P. A. Hisna and P. P. Pradyumnan","doi":"10.1039/D4SE01443J","DOIUrl":null,"url":null,"abstract":"<p >The desire to meet energy demands drives us to develop environment-friendly, renewable, and sustainable energy sources. In this study, a catechin (tea dye)-adsorbed cellulose paper-based triboelectric nanogenerator (TAC-TENG) is suggested as an alternative solution. The material employed is tea dust extract incorporated cellulose paper, which are inexpensive, readily available, and eco-friendly. Triboelectric nanogenerator is an electrical energy-harvesting technology, capable of harvesting any kind of low-frequency mechanical energy as an energy source for powering small electronic devices. The proposed TAC-TENG could directly power up 12 white LEDs and store up to 2.08 μJ with a 1 μF capacitor in 80 s. A better performance was displayed by the tea dye-adsorbed cellulose paper than the pristine one. Thus, the proposed TENG could become more relevant and may have a vivid impact in the nearest future. The proposed TAC-TENG could be employed in self-powered portable and wearable small electronic devices.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 24","pages":" 5877-5886"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01443j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The desire to meet energy demands drives us to develop environment-friendly, renewable, and sustainable energy sources. In this study, a catechin (tea dye)-adsorbed cellulose paper-based triboelectric nanogenerator (TAC-TENG) is suggested as an alternative solution. The material employed is tea dust extract incorporated cellulose paper, which are inexpensive, readily available, and eco-friendly. Triboelectric nanogenerator is an electrical energy-harvesting technology, capable of harvesting any kind of low-frequency mechanical energy as an energy source for powering small electronic devices. The proposed TAC-TENG could directly power up 12 white LEDs and store up to 2.08 μJ with a 1 μF capacitor in 80 s. A better performance was displayed by the tea dye-adsorbed cellulose paper than the pristine one. Thus, the proposed TENG could become more relevant and may have a vivid impact in the nearest future. The proposed TAC-TENG could be employed in self-powered portable and wearable small electronic devices.

Abstract Image

儿茶素诱导的纤维素:一种收获摩擦电的新材料
为满足能源需求,我们致力发展环保、可再生和可持续的能源。在这项研究中,提出了一种吸附儿茶素(茶染料)的纤维素纸基摩擦电纳米发电机(TAC-TENG)作为替代方案。所采用的材料是茶尘提取物结合纤维素纸,价格低廉,易得,环保。摩擦电纳米发电机是一种电能收集技术,能够收集任何一种低频机械能作为小型电子设备供电的能源。所提出的TAC-TENG可以直接为12个白光led供电,并在80s内以1 μF的电容存储高达2.08 μJ的电流。茶染料吸附纤维素纸的性能优于原纸。因此,拟议的TENG可能会变得更加相关,并可能在最近的将来产生生动的影响。提出的TAC-TENG可用于自供电的便携式和可穿戴小型电子设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信