Zhaoxu Li, Yu Liu, Junlang Zhang, Chao Yang, Xintai Su, Chenyuan Zhu, Yongjun Jiang, Wenxin Zhao, Bo Zeng, Chenxi Zhao, Xueli Huang, Hongtao Xie and Yizhao Li
{"title":"A fluorine doped carbon aerogel prepared from the spent cathode carbon of aluminum electrolysis towards electrocatalytic synthesis of H2O2†","authors":"Zhaoxu Li, Yu Liu, Junlang Zhang, Chao Yang, Xintai Su, Chenyuan Zhu, Yongjun Jiang, Wenxin Zhao, Bo Zeng, Chenxi Zhao, Xueli Huang, Hongtao Xie and Yizhao Li","doi":"10.1039/D4SE01505C","DOIUrl":null,"url":null,"abstract":"<p >The sustainability of aluminum electrolysis spent cathode carbon (SCC) is currently an urgent environmental issue that needs to be addressed. In this work, fluorine doped carbon aerogels (SCC-FCAs) were prepared by a series of auxiliary purification methods using the graphite phase and fluoride salt phase of SCC in aluminum electrolysis. The obtained SCC-FCAs were used for electrocatalytic synthesis of H<small><sub>2</sub></small>O<small><sub>2</sub></small> and their performance was evaluated. The experimental results showed that the selectivity of SCC-FCA-500 (heat treatment at 500 °C) reached 87.2%, and the highest yield could reach 900.1 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>. The density functional theory calculation results showed that the covalent C–F bond model has weaker adsorption capacity for *OOH than the semi-ionic C–F bond. In addition, the intersite of the semi-ionic C–F in SCC-FCA-500 is the active site for the adsorption of the intermediate *OOH. This work proposed a self-synthesis strategy of using SCC from aluminum electrolysis, which provided a case for the high-value utilization of SCC in the direction of new energy resources.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 24","pages":" 5828-5838"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01505c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The sustainability of aluminum electrolysis spent cathode carbon (SCC) is currently an urgent environmental issue that needs to be addressed. In this work, fluorine doped carbon aerogels (SCC-FCAs) were prepared by a series of auxiliary purification methods using the graphite phase and fluoride salt phase of SCC in aluminum electrolysis. The obtained SCC-FCAs were used for electrocatalytic synthesis of H2O2 and their performance was evaluated. The experimental results showed that the selectivity of SCC-FCA-500 (heat treatment at 500 °C) reached 87.2%, and the highest yield could reach 900.1 mmol g−1 h−1. The density functional theory calculation results showed that the covalent C–F bond model has weaker adsorption capacity for *OOH than the semi-ionic C–F bond. In addition, the intersite of the semi-ionic C–F in SCC-FCA-500 is the active site for the adsorption of the intermediate *OOH. This work proposed a self-synthesis strategy of using SCC from aluminum electrolysis, which provided a case for the high-value utilization of SCC in the direction of new energy resources.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.