Comparison of Learning Models for Wideband Interference Mitigation in Automotive Chirp Sequence Radar Systems

IF 0.3 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Yudai Suzuki;Xiaoyan Wang;Masahiro Umehira
{"title":"Comparison of Learning Models for Wideband Interference Mitigation in Automotive Chirp Sequence Radar Systems","authors":"Yudai Suzuki;Xiaoyan Wang;Masahiro Umehira","doi":"10.23919/comex.2024COL0013","DOIUrl":null,"url":null,"abstract":"CS (Chirp Sequence) radar plays a crucial role in the safety of autonomous driving. However, its widespread adoption increases the probability of wideband inter-radar interference, leading to miss-detection of targets. To address this problem, we utilize RNN (Recurrent Neural Network) and self-attention models to mitigate wideband interference in automotive radar systems and compare 12 different learning models in terms of SNR (Signal-to-Noise Ratio) and processing time.","PeriodicalId":54101,"journal":{"name":"IEICE Communications Express","volume":"13 12","pages":"470-474"},"PeriodicalIF":0.3000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10633224","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Communications Express","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10633224/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

CS (Chirp Sequence) radar plays a crucial role in the safety of autonomous driving. However, its widespread adoption increases the probability of wideband inter-radar interference, leading to miss-detection of targets. To address this problem, we utilize RNN (Recurrent Neural Network) and self-attention models to mitigate wideband interference in automotive radar systems and compare 12 different learning models in terms of SNR (Signal-to-Noise Ratio) and processing time.
汽车啁啾序列雷达系统宽带干扰抑制学习模型的比较
CS (Chirp Sequence)雷达对自动驾驶的安全性起着至关重要的作用。然而,它的广泛采用增加了宽带雷达间干扰的可能性,导致目标的漏检。为了解决这个问题,我们利用RNN(循环神经网络)和自注意模型来减轻汽车雷达系统中的宽带干扰,并在信噪比和处理时间方面比较了12种不同的学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEICE Communications Express
IEICE Communications Express ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
33.30%
发文量
114
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信