Runci Song, Kefeng Fang, Bing Xiang, Luchang Han, Xin Feng, Jie Chen, Chao Yang
{"title":"Dynamics of two bubbles colliding at high Reynolds numbers in water: Bubble rebound behavior study","authors":"Runci Song, Kefeng Fang, Bing Xiang, Luchang Han, Xin Feng, Jie Chen, Chao Yang","doi":"10.1002/aic.18682","DOIUrl":null,"url":null,"abstract":"The collision between bubbles is essential to gas–liquid dispersion systems. When bubbles encounter each other, they may either rebound or coalesce. Yet, little is known about the rebound dynamics immediately after two bubbles collide. This work investigates such collision dynamics of two bubbles at high Reynolds numbers in water through experiment and simulation. The moving velocity, deformation, contact time during collision and restitution coefficient of bubbles are analyzed. Simulations reproduced quantitatively the bubble rebound behavior, revealing the evolution of various energies involved in collision. Simulation results show that over 70% of the system's initial mechanical energy (SME) could be converted into bubble surface energy (BSE) during the approach. In turn, the excess BSE is converted back into SME driving bubbles to rebound with significant dissipation. A mass-spring-damper model is developed, which describes the dynamic of bubble rebound well. This contribution enhances the understanding of bubble interactions in multiphase flow.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"21 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18682","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The collision between bubbles is essential to gas–liquid dispersion systems. When bubbles encounter each other, they may either rebound or coalesce. Yet, little is known about the rebound dynamics immediately after two bubbles collide. This work investigates such collision dynamics of two bubbles at high Reynolds numbers in water through experiment and simulation. The moving velocity, deformation, contact time during collision and restitution coefficient of bubbles are analyzed. Simulations reproduced quantitatively the bubble rebound behavior, revealing the evolution of various energies involved in collision. Simulation results show that over 70% of the system's initial mechanical energy (SME) could be converted into bubble surface energy (BSE) during the approach. In turn, the excess BSE is converted back into SME driving bubbles to rebound with significant dissipation. A mass-spring-damper model is developed, which describes the dynamic of bubble rebound well. This contribution enhances the understanding of bubble interactions in multiphase flow.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.