Interplay of elasticity and flow velocity on gorgonian feeding and implications for bioinspired design

IF 4.1 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Matea Santiago, Laura A. Miller
{"title":"Interplay of elasticity and flow velocity on gorgonian feeding and implications for bioinspired design","authors":"Matea Santiago, Laura A. Miller","doi":"10.1111/nyas.15250","DOIUrl":null,"url":null,"abstract":"Evidence shows that gorgonians are more resistant to ocean acidification and rising temperatures than hard corals and are vital to reef health and the reestablishment of disrupted coral reef communities. Gorgonian coral's resilience and its diversity of morphology and environment make it well-suited as a model organism for bioinspired design applied to particle capture. We focus on flow near the polyps, using an updated form of the immersed boundary method to model the fluid–structure interaction of the flexible polyps and the surrounding ocean water. The inlet velocity and the polyp elasticity are simultaneously varied to gain insight into (1) how these parameters affect the emergent reconfiguration of their tentacles and (2) how the interaction of the reconfiguration and inlet velocity impacts passive particle capture. Two main behaviors are observed: a recirculation regime, in which particles recirculate in a region near the oral disk, and a unidirectional regime, in which the particles move unidirectionally through the tentacles without recirculation. Our results show that different regimes support different feeding strategies. We apply these results as bioinspired filtration, discussing how an elastic material could benefit specific engineering applications.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"1 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.15250","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Evidence shows that gorgonians are more resistant to ocean acidification and rising temperatures than hard corals and are vital to reef health and the reestablishment of disrupted coral reef communities. Gorgonian coral's resilience and its diversity of morphology and environment make it well-suited as a model organism for bioinspired design applied to particle capture. We focus on flow near the polyps, using an updated form of the immersed boundary method to model the fluid–structure interaction of the flexible polyps and the surrounding ocean water. The inlet velocity and the polyp elasticity are simultaneously varied to gain insight into (1) how these parameters affect the emergent reconfiguration of their tentacles and (2) how the interaction of the reconfiguration and inlet velocity impacts passive particle capture. Two main behaviors are observed: a recirculation regime, in which particles recirculate in a region near the oral disk, and a unidirectional regime, in which the particles move unidirectionally through the tentacles without recirculation. Our results show that different regimes support different feeding strategies. We apply these results as bioinspired filtration, discussing how an elastic material could benefit specific engineering applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of the New York Academy of Sciences
Annals of the New York Academy of Sciences 综合性期刊-综合性期刊
CiteScore
11.00
自引率
1.90%
发文量
193
审稿时长
2-4 weeks
期刊介绍: Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信