Selective colorimetric detection of carbosulfan based on its hydrolysis behavior and Ti3C2/AuPt nanozyme

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Shuxian Dai, Mengting Hu, Wen Zhang, Zhen Lei
{"title":"Selective colorimetric detection of carbosulfan based on its hydrolysis behavior and Ti3C2/AuPt nanozyme","authors":"Shuxian Dai, Mengting Hu, Wen Zhang, Zhen Lei","doi":"10.1016/j.aca.2024.343519","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>Carbosulfan (CBS) is a widely used carbamate pesticide in agricultural production, its easy decomposition into hypertoxic carbofuran poses serious threats to human health and food safety. Therefore, sensitive and accurate detection of CBS is of significant importance. Conventional chromatography-based techniques require expensive instruments and complicated sample pretreatment, limiting their application for fast detection. Current electrochemical and colorimetric methods for detection of pesticides based on the cascade catalytic reactions between acetylcholinesterase (AChE) and nanozymes, which exhibit inferior selectivity. Hence, selective, sensitive and fast detection of CBS is still challenging.<h3>Results</h3>In this work, an AChE-free colorimetric method was proposed for selective detection of CBS based on its unique hydrolysis behavior and nanozyme. Ti<sub>3</sub>C<sub>2</sub> nanosheets/AuPt nanoparticles (Ti<sub>3</sub>C<sub>2</sub>/AuPt NPs) with enhanced peroxidase-like activity were prepared via one-step self-reduction reaction. CBS can be hydrolyzed under acidic condition and produce -SH moieties, which could bond to Pt atoms of Ti<sub>3</sub>C<sub>2</sub>/AuPt NPs and shield the active sites of nanozyme, resulting in decreased catalytic activity. Based on the inhibitory effect on the peroxidase-like activity of Ti<sub>3</sub>C<sub>2</sub>/AuPt NPs, a colorimetric method was proposed for direct detection of CBS. Under optimal conditions, the method showed wide linear range (0.5 ng mL<sup>−1</sup>-5 μg mL<sup>−1</sup>), low limit of detection (0.342 nM), good selectivity and anti-interference ability. The feasibility of this method for practical use was confirmed by analysis of CBS in real lake water samples.<h3>Significance</h3>This work proposed a simple colorimetric method for selective and fast detection of CBS, which avoided employing AChE and cascade catalytic reactions, significantly lowering the detection cost and improving detection efficiency. The method showed great potential for accurate detection of CBS in actual samples, and provided a new avenue for developing nanozyme-based colorimetric method for detection of other pesticide residues.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"7 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2024.343519","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Carbosulfan (CBS) is a widely used carbamate pesticide in agricultural production, its easy decomposition into hypertoxic carbofuran poses serious threats to human health and food safety. Therefore, sensitive and accurate detection of CBS is of significant importance. Conventional chromatography-based techniques require expensive instruments and complicated sample pretreatment, limiting their application for fast detection. Current electrochemical and colorimetric methods for detection of pesticides based on the cascade catalytic reactions between acetylcholinesterase (AChE) and nanozymes, which exhibit inferior selectivity. Hence, selective, sensitive and fast detection of CBS is still challenging.

Results

In this work, an AChE-free colorimetric method was proposed for selective detection of CBS based on its unique hydrolysis behavior and nanozyme. Ti3C2 nanosheets/AuPt nanoparticles (Ti3C2/AuPt NPs) with enhanced peroxidase-like activity were prepared via one-step self-reduction reaction. CBS can be hydrolyzed under acidic condition and produce -SH moieties, which could bond to Pt atoms of Ti3C2/AuPt NPs and shield the active sites of nanozyme, resulting in decreased catalytic activity. Based on the inhibitory effect on the peroxidase-like activity of Ti3C2/AuPt NPs, a colorimetric method was proposed for direct detection of CBS. Under optimal conditions, the method showed wide linear range (0.5 ng mL−1-5 μg mL−1), low limit of detection (0.342 nM), good selectivity and anti-interference ability. The feasibility of this method for practical use was confirmed by analysis of CBS in real lake water samples.

Significance

This work proposed a simple colorimetric method for selective and fast detection of CBS, which avoided employing AChE and cascade catalytic reactions, significantly lowering the detection cost and improving detection efficiency. The method showed great potential for accurate detection of CBS in actual samples, and provided a new avenue for developing nanozyme-based colorimetric method for detection of other pesticide residues.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
文献相关原料
公司名称 产品信息 采购帮参考价格
阿拉丁 Atrazine (Atra)
阿拉丁 Fenobucarb (FNB)
阿拉丁 Carbaryl (Car)
阿拉丁 (2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)
阿拉丁 Chloroplatinic acid hexahydrate (H2PtCl6?6H2O)
阿拉丁 (2,2′-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)
阿拉丁 Cytochrome C (Cyt C)
阿拉丁 Atrazine (Atra)
阿拉丁 o-phenylenediamine (OPD)
阿拉丁 Carbosulfan (CBS)
阿拉丁 Fenobucarb (FNB)
阿拉丁 Parathion-methyl (Para)
阿拉丁 Gold chloride trihydrate (HAuCl4?3H2O)
阿拉丁 o-phenylenediamine (OPD)
阿拉丁 Parathion-methyl (Para)
阿拉丁 3,3′,5,5′-tetramethylbenzidine (TMB)
阿拉丁 Cytochrome C (Cyt C)
阿拉丁 Terephthalic acid (TA)
阿拉丁 Carbosulfan (CBS)
阿拉丁 Carbaryl (Car)
阿拉丁 Terephthalic acid (TA)
阿拉丁 Gold chloride trihydrate (HAuCl4?3H2O)
阿拉丁 3,3′,5,5′-tetramethylbenzidine (TMB)
阿拉丁 Chloroplatinic acid hexahydrate (H2PtCl6?6H2O)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信