Federica Maltese, Giada Pacinelli, Anna Monai, Fabrizio Bernardi, Ana Marta Capaz, Marco Niello, Roman Walle, Noelia de Leon, Francesca Managò, Felix Leroy, Francesco Papaleo
{"title":"Self-experience of a negative event alters responses to others in similar states through prefrontal cortex CRF mechanisms","authors":"Federica Maltese, Giada Pacinelli, Anna Monai, Fabrizio Bernardi, Ana Marta Capaz, Marco Niello, Roman Walle, Noelia de Leon, Francesca Managò, Felix Leroy, Francesco Papaleo","doi":"10.1038/s41593-024-01816-y","DOIUrl":null,"url":null,"abstract":"Our own experience of emotional events influences how we approach and react to others’ emotions. Here we observe that mice exhibit divergent interindividual responses to others in stress (that is, preference or avoidance) only if they have previously experienced the same aversive event. These responses are estrus dependent in females and dominance dependent in males. Notably, silencing the expression of the corticotropin-releasing factor (CRF) within the medial prefrontal cortex (mPFC) attenuates the impact of stress self-experience on the reaction to others’ stress. In vivo microendoscopic calcium imaging revealed that mPFC CRF neurons are activated more toward others’ stress only following the same negative self-experience. Optogenetic manipulations confirmed that higher activation of mPFC CRF neurons is responsible for the switch from preference to avoidance of others in stress, but only following stress self-experience. These results provide a neurobiological substrate underlying how an individual’s emotional experience influences their approach toward others in a negative emotional state. Maltese et al. show in mice that experiencing an adverse event affects future interaction with others experiencing the same stressor. These self-experience socioemotional reactions are orchestrated by the corticotropin-releasing factor system in the medial prefrontal cortex.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"28 1","pages":"122-136"},"PeriodicalIF":21.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-024-01816-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Our own experience of emotional events influences how we approach and react to others’ emotions. Here we observe that mice exhibit divergent interindividual responses to others in stress (that is, preference or avoidance) only if they have previously experienced the same aversive event. These responses are estrus dependent in females and dominance dependent in males. Notably, silencing the expression of the corticotropin-releasing factor (CRF) within the medial prefrontal cortex (mPFC) attenuates the impact of stress self-experience on the reaction to others’ stress. In vivo microendoscopic calcium imaging revealed that mPFC CRF neurons are activated more toward others’ stress only following the same negative self-experience. Optogenetic manipulations confirmed that higher activation of mPFC CRF neurons is responsible for the switch from preference to avoidance of others in stress, but only following stress self-experience. These results provide a neurobiological substrate underlying how an individual’s emotional experience influences their approach toward others in a negative emotional state. Maltese et al. show in mice that experiencing an adverse event affects future interaction with others experiencing the same stressor. These self-experience socioemotional reactions are orchestrated by the corticotropin-releasing factor system in the medial prefrontal cortex.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.