Development and Use of DJ-1 Affinity Microcolumns to Screen and Study Small Drug Candidates for Parkinson’s Disease

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Jacob C. Jones, Jiusheng Lin, Sadia Sharmeen, Md Masudur Rahman, Ha H. Truong, Ting-Rong Chern, Mark A. Wilson, David S. Hage
{"title":"Development and Use of DJ-1 Affinity Microcolumns to Screen and Study Small Drug Candidates for Parkinson’s Disease","authors":"Jacob C. Jones, Jiusheng Lin, Sadia Sharmeen, Md Masudur Rahman, Ha H. Truong, Ting-Rong Chern, Mark A. Wilson, David S. Hage","doi":"10.1016/j.aca.2024.343520","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>DJ-1 is a protein whose mutation causes rare heritable forms of Parkinson’s disease (PD) and is of interest as a target for treating PD and other disorders. This work used high performance affinity microcolumns to screen and examine the binding of small molecules to DJ-1, as could be used to develop new therapeutics or to study the role of DJ-1 in PD. Non-covalent entrapment was used to place microgram quantities of DJ-1 in an unmodified form within microcolumns, which were then used in multiple studies to analyze binding by model compounds and possible drug candidates to DJ-1.<h3>Results</h3>Several factors were examined in optimizing the entrapment method, including the addition of a reducing agent to maintain a reduced active site cysteine residue in DJ-1, the concentration of DJ-1 employed, and the entrapment times. Isatin was used as a known binding agent (dissociation constant, ∼2.0 μM) and probe for DJ-1 activity. This compound gave good retention on 2.0 cm × 2.1 mm inner diameter DJ-1 microcolumns made under the final entrapment conditions, with a typical retention factor of 14 and elution in ∼8 min at 0.50 mL/min. These DJ-1 microcolumns were used to evaluate the binding of small molecules that were selected <em>in silico</em> to bind or not to bind DJ-1. A compound predicted to have good binding with DJ-1 gave a retention factor of 122, an elution time of ∼15 min at 0.50 mL/min, and an estimated dissociation constant for this protein of 0.5 μM.<h3>Significance</h3>These chromatographic tools can be used in future work to screen additional possible binding agents for DJ-1 or adapted for examining drug candidates for other proteins. This work represents the first time protein entrapment has been deployed with DJ-1, and it is the first experimental confirmation of binding to DJ-1 by a small lead compound selected <em>in silico</em>.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"26 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2024.343520","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

DJ-1 is a protein whose mutation causes rare heritable forms of Parkinson’s disease (PD) and is of interest as a target for treating PD and other disorders. This work used high performance affinity microcolumns to screen and examine the binding of small molecules to DJ-1, as could be used to develop new therapeutics or to study the role of DJ-1 in PD. Non-covalent entrapment was used to place microgram quantities of DJ-1 in an unmodified form within microcolumns, which were then used in multiple studies to analyze binding by model compounds and possible drug candidates to DJ-1.

Results

Several factors were examined in optimizing the entrapment method, including the addition of a reducing agent to maintain a reduced active site cysteine residue in DJ-1, the concentration of DJ-1 employed, and the entrapment times. Isatin was used as a known binding agent (dissociation constant, ∼2.0 μM) and probe for DJ-1 activity. This compound gave good retention on 2.0 cm × 2.1 mm inner diameter DJ-1 microcolumns made under the final entrapment conditions, with a typical retention factor of 14 and elution in ∼8 min at 0.50 mL/min. These DJ-1 microcolumns were used to evaluate the binding of small molecules that were selected in silico to bind or not to bind DJ-1. A compound predicted to have good binding with DJ-1 gave a retention factor of 122, an elution time of ∼15 min at 0.50 mL/min, and an estimated dissociation constant for this protein of 0.5 μM.

Significance

These chromatographic tools can be used in future work to screen additional possible binding agents for DJ-1 or adapted for examining drug candidates for other proteins. This work represents the first time protein entrapment has been deployed with DJ-1, and it is the first experimental confirmation of binding to DJ-1 by a small lead compound selected in silico.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信