Superior Capacitive Energy Storage Enabled by Molecularly Interpenetrating Interfaces in Layered Polymers

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liang Sun, Fengyuan Zhang, Li Li, Jiajie Liang, Jiufeng Dong, Zizhao Pan, Yujuan Niu, Jiaxin Chen, Yuqi Liu, Yani Lu, Kai Wu, Qi Li, Jiangyu Li, Qing Wang, Hong Wang
{"title":"Superior Capacitive Energy Storage Enabled by Molecularly Interpenetrating Interfaces in Layered Polymers","authors":"Liang Sun, Fengyuan Zhang, Li Li, Jiajie Liang, Jiufeng Dong, Zizhao Pan, Yujuan Niu, Jiaxin Chen, Yuqi Liu, Yani Lu, Kai Wu, Qi Li, Jiangyu Li, Qing Wang, Hong Wang","doi":"10.1002/adma.202412561","DOIUrl":null,"url":null,"abstract":"Polymer dielectrics are essential for advanced electronics and electrical power systems, yet they suffer from low energy density (<i>U</i><sub>e</sub>) due to their low dielectric constant (<i>K</i>) and the inverse relationship between <i>K</i> and breakdown stength (<i>E</i><sub>b</sub>). Here a scalable approach utilizing the designed molecularly interpenetrating interfaces is presented to achieve all-organic dielectric polymers with high <i>U</i><sub>e</sub> and charge–dischage efficiency (<i>η</i>). Distinctive intermolecular interactions and microstructural changes, as demonstrated experimentally and theoretically, are introduced by the molecularly interpenetrating interfaces, resulting in simultaneous improvements in dielectric responses and mechanical strength while inhibiting electrical conduction – outcomes unattainable in conventional layered polymers. Consequently, exceptional improvments in both <i>K</i> and <i>E</i><sub>b</sub> are achieved, yielding a very high <i>U</i><sub>e</sub> of 22.89 J cm<sup>−3</sup> with <i>η</i> ≥ 90%, outperforming current layered polymer dielectrics. The bilayers can be easily fabricated into large-area films with high uniformity and outstanding capacitive stability (&gt;500 000 cycles), offering a practical route to scalable high-<i>U</i><sub>e</sub> polymer dielectrics for electrical energy storage.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"82 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202412561","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer dielectrics are essential for advanced electronics and electrical power systems, yet they suffer from low energy density (Ue) due to their low dielectric constant (K) and the inverse relationship between K and breakdown stength (Eb). Here a scalable approach utilizing the designed molecularly interpenetrating interfaces is presented to achieve all-organic dielectric polymers with high Ue and charge–dischage efficiency (η). Distinctive intermolecular interactions and microstructural changes, as demonstrated experimentally and theoretically, are introduced by the molecularly interpenetrating interfaces, resulting in simultaneous improvements in dielectric responses and mechanical strength while inhibiting electrical conduction – outcomes unattainable in conventional layered polymers. Consequently, exceptional improvments in both K and Eb are achieved, yielding a very high Ue of 22.89 J cm−3 with η ≥ 90%, outperforming current layered polymer dielectrics. The bilayers can be easily fabricated into large-area films with high uniformity and outstanding capacitive stability (>500 000 cycles), offering a practical route to scalable high-Ue polymer dielectrics for electrical energy storage.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信