Active fluorobenzene diluent regulated tetraglyme electrolyte enabling high-performance Li metal batteries

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Qinghui Zhang, Yilu Wu, Maosheng Li, Ning Wang, Kuirong Deng
{"title":"Active fluorobenzene diluent regulated tetraglyme electrolyte enabling high-performance Li metal batteries","authors":"Qinghui Zhang, Yilu Wu, Maosheng Li, Ning Wang, Kuirong Deng","doi":"10.1016/j.ensm.2024.103940","DOIUrl":null,"url":null,"abstract":"Electrolytes with superior compatibility with Li metal anodes and high-voltage cathodes are crucial for high-voltage Li metal batteries. Herein, tetraglyme (G4) with both high oxidation stability and reduction stability is employed to design localized high concentration electrolyte (G4-FB) regulated by active diluent fluorobenzene (FB) via active diluent-anion synergy strategy. FB possesses high activity for generating LiF and cooperates with anions to construct robust LiF-rich solid electrolyte interphases (SEIs) and cathode-electrolyte interphases (CEIs), effectively enhancing the interfacial stability of Li metal anodes and LiNi<sub>0.8</sub>Mn<sub>0.1</sub>Co<sub>0.1</sub>O<sub>2</sub> (NCM811) cathodes. G4-FB enables high-efficiency (99.7%), long-term (1439 h) and dendrite-free cycle of Li||Li cells and Li||Cu cells. Parasitic interface reactions and structural damages of NCM811 are significantly suppressed by the robust LiF-rich CEIs. G4-FB markedly boosts the performance of NCM811||Li cells even under harsh conditions, including high voltage (4.5 V), high temperature (60°C), high cathode loading (3.6 mAh cm<sup>−2</sup>) and thin Li metal anode (50 μm), which display a high capacity retention of 86.3% after 300 cycles. The powerful diluent effect of FB remarkably decreases viscosity, increases ionic conductivity and enhances wettability of G4-FB. This work presents a promising design strategy of highly efficient electrolytes for Li metal batteries.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"13 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103940","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolytes with superior compatibility with Li metal anodes and high-voltage cathodes are crucial for high-voltage Li metal batteries. Herein, tetraglyme (G4) with both high oxidation stability and reduction stability is employed to design localized high concentration electrolyte (G4-FB) regulated by active diluent fluorobenzene (FB) via active diluent-anion synergy strategy. FB possesses high activity for generating LiF and cooperates with anions to construct robust LiF-rich solid electrolyte interphases (SEIs) and cathode-electrolyte interphases (CEIs), effectively enhancing the interfacial stability of Li metal anodes and LiNi0.8Mn0.1Co0.1O2 (NCM811) cathodes. G4-FB enables high-efficiency (99.7%), long-term (1439 h) and dendrite-free cycle of Li||Li cells and Li||Cu cells. Parasitic interface reactions and structural damages of NCM811 are significantly suppressed by the robust LiF-rich CEIs. G4-FB markedly boosts the performance of NCM811||Li cells even under harsh conditions, including high voltage (4.5 V), high temperature (60°C), high cathode loading (3.6 mAh cm−2) and thin Li metal anode (50 μm), which display a high capacity retention of 86.3% after 300 cycles. The powerful diluent effect of FB remarkably decreases viscosity, increases ionic conductivity and enhances wettability of G4-FB. This work presents a promising design strategy of highly efficient electrolytes for Li metal batteries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信