Shingo Ohta, Nikhilendra Singh, Rajeev Kumar Rai, Hyeongjun Koh, Yihui Zhang, Wonjoon Suk, Max J. Palmer, Son-Jong Hwang, Michael Jones, Chuhong Wang, Chen Ling, Kimber Stamm Masias, Eli Stavitski, Jeff Sakamoto, Eric A. Stach
{"title":"Fast ionic conduction achieved through the design and synthesis of ceramic heterointerfaces","authors":"Shingo Ohta, Nikhilendra Singh, Rajeev Kumar Rai, Hyeongjun Koh, Yihui Zhang, Wonjoon Suk, Max J. Palmer, Son-Jong Hwang, Michael Jones, Chuhong Wang, Chen Ling, Kimber Stamm Masias, Eli Stavitski, Jeff Sakamoto, Eric A. Stach","doi":"10.1016/j.joule.2024.11.006","DOIUrl":null,"url":null,"abstract":"Lithium (Li) chloride and iron oxychloride (FeOCl), typically nonconductive, were combined to form a [Li<sub>1+<em>δ</em></sub>Cl]<sup><em>δ</em>+</sup>/[FeOCl]<sup><em>δ</em>−</sup> heterointerface composite material (LFH), achieving ionic conductivities of >1 mS cm<sup>−1</sup>. Analysis techniques (scanning transmission electron microscopy [STEM] and electron energy-loss spectroscopy [EELS]) indicated that the microstructure of LFH consisted of an amorphous LiCl-based shell surrounding a crystalline FeOCl-based core. Electrochemical measurements alongside solid-state <sup>6,7</sup>Li nuclear magnetic resonance (NMR) and molecular dynamic simulations revealed Li<sup>+</sup> as the sole conductive species, with a diffusion barrier of ∼0.25 eV. X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) results further supported interstitial Li<sup>+</sup> diffusion at the heterointerface and within the LiCl phase, made possible by the heterointerface. Despite susceptibility to electronic conductivity, iron’s defects and multivalency (Fe³⁺, Fe²⁺) enable the Fe–O–Cl framework to accept Cl<sup>−</sup>, facilitating Li⁺ ionic conduction. A prototype solid-state cell (showing 97% Coulombic efficiency) demonstrated the viability of this heterointerface design for applications in energy storage.","PeriodicalId":343,"journal":{"name":"Joule","volume":"5 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.11.006","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium (Li) chloride and iron oxychloride (FeOCl), typically nonconductive, were combined to form a [Li1+δCl]δ+/[FeOCl]δ− heterointerface composite material (LFH), achieving ionic conductivities of >1 mS cm−1. Analysis techniques (scanning transmission electron microscopy [STEM] and electron energy-loss spectroscopy [EELS]) indicated that the microstructure of LFH consisted of an amorphous LiCl-based shell surrounding a crystalline FeOCl-based core. Electrochemical measurements alongside solid-state 6,7Li nuclear magnetic resonance (NMR) and molecular dynamic simulations revealed Li+ as the sole conductive species, with a diffusion barrier of ∼0.25 eV. X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) results further supported interstitial Li+ diffusion at the heterointerface and within the LiCl phase, made possible by the heterointerface. Despite susceptibility to electronic conductivity, iron’s defects and multivalency (Fe³⁺, Fe²⁺) enable the Fe–O–Cl framework to accept Cl−, facilitating Li⁺ ionic conduction. A prototype solid-state cell (showing 97% Coulombic efficiency) demonstrated the viability of this heterointerface design for applications in energy storage.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.