Liang Guo, Chenghui Ju, Xia Xu, Guomo Zhou, Yiqi Luo, Chonghua Xu, Qian Li, Huaqiang Du, Wenfang Liu, Yan Zhou
{"title":"Unveiling Pervasive Soil Microbial P Limitation in Terrestrial Ecosystems Worldwide","authors":"Liang Guo, Chenghui Ju, Xia Xu, Guomo Zhou, Yiqi Luo, Chonghua Xu, Qian Li, Huaqiang Du, Wenfang Liu, Yan Zhou","doi":"10.1111/ele.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Soil microorganisms are crucial in terrestrial ecosystems, influencing carbon (C) sequestration, yet their metabolic activities are often constrained by nitrogen (N) and phosphorus (P) availability. Despite this, a global understanding of microbial nutrient limitation remains elusive. We synthesised 1245 observations from 225 articles to elucidate patterns and factors of microbial nutrient limitation. Contrary to convention, soil microbial P limitation is widespread (83.78% of observations), with N limitation mainly in temperate zones and pronounced P limitation in tropical and cold zones. Soil microbial P limitation correlates positively with mean annual precipitation and clay content, while N limitation correlates negatively with soil pH. Importantly, microbial nutrient limitation directly affects C cycling, as microbial C limitation increases with decreasing N or P limitation. This underscores the significance of microbial nutrient limitation in terrestrial C cycling and the need to incorporate it into Earth system models for accurate predictions under changing conditions.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 11","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.70011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70011","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil microorganisms are crucial in terrestrial ecosystems, influencing carbon (C) sequestration, yet their metabolic activities are often constrained by nitrogen (N) and phosphorus (P) availability. Despite this, a global understanding of microbial nutrient limitation remains elusive. We synthesised 1245 observations from 225 articles to elucidate patterns and factors of microbial nutrient limitation. Contrary to convention, soil microbial P limitation is widespread (83.78% of observations), with N limitation mainly in temperate zones and pronounced P limitation in tropical and cold zones. Soil microbial P limitation correlates positively with mean annual precipitation and clay content, while N limitation correlates negatively with soil pH. Importantly, microbial nutrient limitation directly affects C cycling, as microbial C limitation increases with decreasing N or P limitation. This underscores the significance of microbial nutrient limitation in terrestrial C cycling and the need to incorporate it into Earth system models for accurate predictions under changing conditions.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.