Two Novel Hot Jupiter Formation Pathways: How White Dwarf Kicks Shape the Hot Jupiter Population

Alexander P. Stephan, David V. Martin, Smadar Naoz, Nathan R. Hughes and Cheyanne Shariat
{"title":"Two Novel Hot Jupiter Formation Pathways: How White Dwarf Kicks Shape the Hot Jupiter Population","authors":"Alexander P. Stephan, David V. Martin, Smadar Naoz, Nathan R. Hughes and Cheyanne Shariat","doi":"10.3847/2041-8213/ad94d8","DOIUrl":null,"url":null,"abstract":"The origin of Hot Jupiters (HJs) is disputed between a variety of in situ and ex situ formation scenarios. One of the early proposed ex situ scenarios was the Eccentric Kozai–Lidov (EKL) mechanism combined with tidal circularization, which can produce HJs with the aid of a stellar or planetary companion. However, observations have revealed a lack of stellar companions to HJs, which challenges the importance of the binary star-driven-EKL-plus-tides scenario. In this work, we explore so far unaccounted-for stellar evolution effects on HJ formation, in particular the effect of white dwarf (WD) formation. Gaia observations have revealed that WDs often undergo a kick during formation, which can alter a binary’s orbital configuration or even unbind it. Based on this WD kick, in this Letter, we propose and explore two novel HJ formation pathways: (1) HJs that are presently orbiting single stars but were initially formed in a binary that was later unbound by a WD kick; (2) binaries that survive the WD kick can trigger enhanced EKL oscillations and lead to second-generation HJ formation. We demonstrate that the majority of seemingly single HJs could have formed in binary star systems. As such, HJ formation in binaries via the EKL mechanism could be one of the dominant HJ formation pathways, and our results highlight that unaccounted-for stellar evolution effects, like WD formation, can obscure the actual origin of observed exoplanet populations.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad94d8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The origin of Hot Jupiters (HJs) is disputed between a variety of in situ and ex situ formation scenarios. One of the early proposed ex situ scenarios was the Eccentric Kozai–Lidov (EKL) mechanism combined with tidal circularization, which can produce HJs with the aid of a stellar or planetary companion. However, observations have revealed a lack of stellar companions to HJs, which challenges the importance of the binary star-driven-EKL-plus-tides scenario. In this work, we explore so far unaccounted-for stellar evolution effects on HJ formation, in particular the effect of white dwarf (WD) formation. Gaia observations have revealed that WDs often undergo a kick during formation, which can alter a binary’s orbital configuration or even unbind it. Based on this WD kick, in this Letter, we propose and explore two novel HJ formation pathways: (1) HJs that are presently orbiting single stars but were initially formed in a binary that was later unbound by a WD kick; (2) binaries that survive the WD kick can trigger enhanced EKL oscillations and lead to second-generation HJ formation. We demonstrate that the majority of seemingly single HJs could have formed in binary star systems. As such, HJ formation in binaries via the EKL mechanism could be one of the dominant HJ formation pathways, and our results highlight that unaccounted-for stellar evolution effects, like WD formation, can obscure the actual origin of observed exoplanet populations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信