Alessia Provino, Thomas J. Emge, David Walker, Corey E. Frank, Suguru Yoshida, Venkatraman Gopalan, Mark Croft, Zheng Deng, Changqing Jin, Pietro Manfrinetti, Martha Greenblatt
{"title":"Zn2MnSbO6 and Zn2FeSbO6: Two New Polar High-Pressure Ordered Corundum-Type Compounds","authors":"Alessia Provino, Thomas J. Emge, David Walker, Corey E. Frank, Suguru Yoshida, Venkatraman Gopalan, Mark Croft, Zheng Deng, Changqing Jin, Pietro Manfrinetti, Martha Greenblatt","doi":"10.1021/acs.chemmater.4c02146","DOIUrl":null,"url":null,"abstract":"Two new compounds, Zn<sub>2</sub>FeSbO<sub>6</sub> and Zn<sub>2</sub>MnSbO<sub>6</sub>, have been synthesized under high-pressure and high-temperature conditions. The synthesis, single-crystal and powder X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), optical second harmonic generation (SHG), and magnetic and heat capacity measurements were carried out for both compounds and are described. The lattice parameters are <i>a</i> = 5.17754(6) Å and <i>c</i> = 13.80045(16) Å for Zn<sub>2</sub>FeSbO<sub>6</sub> and <i>a</i> = 5.1889(10) Å and <i>c</i> = 14.0418(3) Å for Zn<sub>2</sub>MnSbO<sub>6</sub>. Single-crystal X-ray diffraction analyses indicate that Zn<sub>2</sub>FeSbO<sub>6</sub> consists of a cocrystal of superimposed Ni<sub>3</sub>TeO<sub>6</sub> (NTO) and ordered ilmenite (OIL) components with a ratio of approximately 2:1 and Zn<sub>2</sub>MnSbO<sub>6</sub> contains two nearly identical, but noncrystallographically related, OIL components in a ratio of approximately 6:1. XANES analysis shows Fe<sup>3+</sup> and Mn<sup>3+</sup> as formal oxidation states for Fe and Mn cations, respectively, for these A<sub>2</sub>BB′O<sub>6</sub> compounds. SHG measurements for Zn<sub>2</sub>MnSbO<sub>6</sub> indicate that it is noncentrosymmetric and confirm the polar <i>R</i>3 (no. 146) space group strongly implied by single-crystal reflection data. The magnetic measurements reveal spin-glass behavior with antiferromagnetic (AFM) interactions in both compounds and a frustration factor (<i>f</i>) being significantly larger for Zn<sub>2</sub>MnSbO<sub>6</sub> (<i>f</i> ≈ 20) compared to Zn<sub>2</sub>FeSbO<sub>6</sub> (<i>f</i> ≈ 7). While Zn<sub>2</sub>FeSbO<sub>6</sub> exhibits AFM ordering at a Néel temperature (<i>T</i><sub>N</sub>) of 9 K, Zn<sub>2</sub>MnSbO<sub>6</sub> shows magnetic ordering around 4 K. Additionally, the negative Curie–Weiss temperatures for both compounds corroborate the presence of AFM exchange interactions.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"13 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02146","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two new compounds, Zn2FeSbO6 and Zn2MnSbO6, have been synthesized under high-pressure and high-temperature conditions. The synthesis, single-crystal and powder X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), optical second harmonic generation (SHG), and magnetic and heat capacity measurements were carried out for both compounds and are described. The lattice parameters are a = 5.17754(6) Å and c = 13.80045(16) Å for Zn2FeSbO6 and a = 5.1889(10) Å and c = 14.0418(3) Å for Zn2MnSbO6. Single-crystal X-ray diffraction analyses indicate that Zn2FeSbO6 consists of a cocrystal of superimposed Ni3TeO6 (NTO) and ordered ilmenite (OIL) components with a ratio of approximately 2:1 and Zn2MnSbO6 contains two nearly identical, but noncrystallographically related, OIL components in a ratio of approximately 6:1. XANES analysis shows Fe3+ and Mn3+ as formal oxidation states for Fe and Mn cations, respectively, for these A2BB′O6 compounds. SHG measurements for Zn2MnSbO6 indicate that it is noncentrosymmetric and confirm the polar R3 (no. 146) space group strongly implied by single-crystal reflection data. The magnetic measurements reveal spin-glass behavior with antiferromagnetic (AFM) interactions in both compounds and a frustration factor (f) being significantly larger for Zn2MnSbO6 (f ≈ 20) compared to Zn2FeSbO6 (f ≈ 7). While Zn2FeSbO6 exhibits AFM ordering at a Néel temperature (TN) of 9 K, Zn2MnSbO6 shows magnetic ordering around 4 K. Additionally, the negative Curie–Weiss temperatures for both compounds corroborate the presence of AFM exchange interactions.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.