{"title":"Balanced IR Nonlinear Optical Performance Achieved by Cation–Anion Module Cosubstitution in V-Based Salt-Inclusion Oxychalcogenides","authors":"Mao-Yin Ran, Sheng-Hua Zhou, Bing-Xuan Li, Xin-Tao Wu, Hua Lin, Qi-Long Zhu","doi":"10.1021/acs.chemmater.4c02779","DOIUrl":null,"url":null,"abstract":"Oxychalcogenides have become notable contenders for infrared nonlinear optical (IR NLO) applications because of their diverse heteroanionic functional motifs. However, while the main group elements are well-explored for these motifs, transition elements have been less studied and lack high-performance materials. To address this gap, we investigated a series of noncentrosymmetric [Ba<sub>4</sub>(Ba<sub>6</sub>S)][(VO<sub><i>x</i></sub>S<sub>4–<i>x</i></sub>)<sub>6</sub>] (space group: <i>P</i>6<sub>3</sub>), the first V-based salt-inclusion oxychalcogenides demonstrating phase-matched IR-NLO properties. We achieved this by cation–anion module cosubstitution in the centrosymmetric structure of [Ba<sub>4</sub>(Ba<sub>6</sub>Cl<sub>2</sub>)][(VO<sub>4</sub>)<sub>6</sub>] (space group: <i>P</i>6<sub>3</sub>/<i>m</i>). The novel [Ba<sub>4</sub>(Ba<sub>6</sub>S)][(VO<sub><i>x</i></sub>S<sub>4–<i>x</i></sub>)<sub>6</sub>] features isolated heteroanionic [VO<sub><i>x</i></sub>S<sub>4–<i>x</i></sub>]<sup>3–</sup> units, charge-balanced Ba<sup>2+</sup> cations, and a one-dimensional cationic chain of [Ba<sub>6</sub>S]<sup>10+</sup> octahedral units. Moreover, [Ba<sub>4</sub>(Ba<sub>6</sub>S)][(VO<sub>3</sub>S)<sub>6</sub>] exhibits notable properties including a high second-harmonic-generation intensity (1.33 × AgGaS<sub>2</sub>@2900 nm), a substantial laser-induced damage threshold (7.65 × AgGaS<sub>2</sub>), a broad IR cutoff edge (up to 11.2 μm), and significant birefringence for phase matching (Δ<i>n</i> = 0.073@2900 nm). Structural analysis and DFT calculations demonstrate that the configuration of the [VO<sub>3</sub>S]<sup>3–</sup> units enhances NLO properties and increases structural anisotropy. Our findings suggest that V-based salt-inclusion oxychalcogenides are a promising class for IR-NLO applications and highlight cation–anion module cosubstitution as an effective approach for creating high-performance heteroanionic NLO crystals.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"18 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02779","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oxychalcogenides have become notable contenders for infrared nonlinear optical (IR NLO) applications because of their diverse heteroanionic functional motifs. However, while the main group elements are well-explored for these motifs, transition elements have been less studied and lack high-performance materials. To address this gap, we investigated a series of noncentrosymmetric [Ba4(Ba6S)][(VOxS4–x)6] (space group: P63), the first V-based salt-inclusion oxychalcogenides demonstrating phase-matched IR-NLO properties. We achieved this by cation–anion module cosubstitution in the centrosymmetric structure of [Ba4(Ba6Cl2)][(VO4)6] (space group: P63/m). The novel [Ba4(Ba6S)][(VOxS4–x)6] features isolated heteroanionic [VOxS4–x]3– units, charge-balanced Ba2+ cations, and a one-dimensional cationic chain of [Ba6S]10+ octahedral units. Moreover, [Ba4(Ba6S)][(VO3S)6] exhibits notable properties including a high second-harmonic-generation intensity (1.33 × AgGaS2@2900 nm), a substantial laser-induced damage threshold (7.65 × AgGaS2), a broad IR cutoff edge (up to 11.2 μm), and significant birefringence for phase matching (Δn = 0.073@2900 nm). Structural analysis and DFT calculations demonstrate that the configuration of the [VO3S]3– units enhances NLO properties and increases structural anisotropy. Our findings suggest that V-based salt-inclusion oxychalcogenides are a promising class for IR-NLO applications and highlight cation–anion module cosubstitution as an effective approach for creating high-performance heteroanionic NLO crystals.
期刊介绍:
The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.