Minsu Pyo, Dongyeon Kim, Hyung Soo Kim, Moon-Hyun Hwang, Sangyoup Lee, Eui-Jong Lee
{"title":"Sulfur powder utilization and denitrification efficiency in an elemental sulfur-based membrane bioreactor with coagulant addition","authors":"Minsu Pyo, Dongyeon Kim, Hyung Soo Kim, Moon-Hyun Hwang, Sangyoup Lee, Eui-Jong Lee","doi":"10.1016/j.watres.2024.122882","DOIUrl":null,"url":null,"abstract":"The integration of elemental sulfur-based autotrophic denitrification with membrane bioreactor (MBR) technology offers a cost-effective solution for nitrate removal; however, stable operation demands efficient sulfur utilization and phosphorus management. This study explores sulfur consumption dynamics and the impacts of coagulant injection on denitrification efficiency. Sulfur consumption was closely correlated with nitrate removal rates, highlighting the critical role of stoichiometric sulfur availability for sustained denitrification. While coagulant addition enhanced phosphorus removal, excessive dosing impaired elemental sulfur-based microbial activity, reducing nitrate removal efficiency and increasing nitrite accumulation. Notably, microbial community analysis revealed a decline in the abundance of key sulfur-oxidizing bacteria, such as Sulfurimonas, under high coagulant concentrations. These findings emphasize the need for optimized sulfur and coagulant dosing strategies to balance phosphorus and nitrate removal while preserving microbial diversity and reactor stability. This study provides practical insights into operational parameters for efficient and sustainable ESAD-MBR processes.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"75 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122882","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of elemental sulfur-based autotrophic denitrification with membrane bioreactor (MBR) technology offers a cost-effective solution for nitrate removal; however, stable operation demands efficient sulfur utilization and phosphorus management. This study explores sulfur consumption dynamics and the impacts of coagulant injection on denitrification efficiency. Sulfur consumption was closely correlated with nitrate removal rates, highlighting the critical role of stoichiometric sulfur availability for sustained denitrification. While coagulant addition enhanced phosphorus removal, excessive dosing impaired elemental sulfur-based microbial activity, reducing nitrate removal efficiency and increasing nitrite accumulation. Notably, microbial community analysis revealed a decline in the abundance of key sulfur-oxidizing bacteria, such as Sulfurimonas, under high coagulant concentrations. These findings emphasize the need for optimized sulfur and coagulant dosing strategies to balance phosphorus and nitrate removal while preserving microbial diversity and reactor stability. This study provides practical insights into operational parameters for efficient and sustainable ESAD-MBR processes.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.