CO-tolerant heterogeneous ruthenium catalysts for efficient formic acid dehydrogenation

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Guangxin Xue, Yueyue Jiao, Xiang Li, Tian Lin, Caoyu Yang, Sihan Chen, Zupeng Chen, Haifeng Qi, Stephan Bartling, Haijun Jiao, Henrik Junge, Matthias Beller
{"title":"CO-tolerant heterogeneous ruthenium catalysts for efficient formic acid dehydrogenation","authors":"Guangxin Xue, Yueyue Jiao, Xiang Li, Tian Lin, Caoyu Yang, Sihan Chen, Zupeng Chen, Haifeng Qi, Stephan Bartling, Haijun Jiao, Henrik Junge, Matthias Beller","doi":"10.1002/anie.202416530","DOIUrl":null,"url":null,"abstract":"The development of improved and less costly catalysts for dehydrogenation of formic acid (HCOOH) is of general interest for renewable energy technologies involving hydrogen storage and release. Theoretical calculations reveal that ruthenium (Ru) nanoparticles supported on nitrogen-doped carbon should be appropriate catalysts for such transformations. It is predicted that nitrogen doping significantly decreases the formation of CO, but at the same time increases CO tolerance of the catalysts. To prove these hypotheses heterogeneous ruthenium catalysts supported on porous nitrogen-doped carbon (Rux/CN) with hierarchical structure were synthesized using carbon nitride (C3N4) as template and phenanthroline (Phen) as ligand. Experimental tests in HCOOH dehydrogenation revealed the optimal catalyst Ru7/CN exhibiting good thermal stability and a high turnover frequency (TOF > 1300 h-1), which is more than one order of magnitude higher than that of the commercial Ru5/C catalyst.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"19 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416530","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of improved and less costly catalysts for dehydrogenation of formic acid (HCOOH) is of general interest for renewable energy technologies involving hydrogen storage and release. Theoretical calculations reveal that ruthenium (Ru) nanoparticles supported on nitrogen-doped carbon should be appropriate catalysts for such transformations. It is predicted that nitrogen doping significantly decreases the formation of CO, but at the same time increases CO tolerance of the catalysts. To prove these hypotheses heterogeneous ruthenium catalysts supported on porous nitrogen-doped carbon (Rux/CN) with hierarchical structure were synthesized using carbon nitride (C3N4) as template and phenanthroline (Phen) as ligand. Experimental tests in HCOOH dehydrogenation revealed the optimal catalyst Ru7/CN exhibiting good thermal stability and a high turnover frequency (TOF > 1300 h-1), which is more than one order of magnitude higher than that of the commercial Ru5/C catalyst.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信