{"title":"CO-tolerant heterogeneous ruthenium catalysts for efficient formic acid dehydrogenation","authors":"Guangxin Xue, Yueyue Jiao, Xiang Li, Tian Lin, Caoyu Yang, Sihan Chen, Zupeng Chen, Haifeng Qi, Stephan Bartling, Haijun Jiao, Henrik Junge, Matthias Beller","doi":"10.1002/anie.202416530","DOIUrl":null,"url":null,"abstract":"The development of improved and less costly catalysts for dehydrogenation of formic acid (HCOOH) is of general interest for renewable energy technologies involving hydrogen storage and release. Theoretical calculations reveal that ruthenium (Ru) nanoparticles supported on nitrogen-doped carbon should be appropriate catalysts for such transformations. It is predicted that nitrogen doping significantly decreases the formation of CO, but at the same time increases CO tolerance of the catalysts. To prove these hypotheses heterogeneous ruthenium catalysts supported on porous nitrogen-doped carbon (Rux/CN) with hierarchical structure were synthesized using carbon nitride (C3N4) as template and phenanthroline (Phen) as ligand. Experimental tests in HCOOH dehydrogenation revealed the optimal catalyst Ru7/CN exhibiting good thermal stability and a high turnover frequency (TOF > 1300 h-1), which is more than one order of magnitude higher than that of the commercial Ru5/C catalyst.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"19 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416530","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of improved and less costly catalysts for dehydrogenation of formic acid (HCOOH) is of general interest for renewable energy technologies involving hydrogen storage and release. Theoretical calculations reveal that ruthenium (Ru) nanoparticles supported on nitrogen-doped carbon should be appropriate catalysts for such transformations. It is predicted that nitrogen doping significantly decreases the formation of CO, but at the same time increases CO tolerance of the catalysts. To prove these hypotheses heterogeneous ruthenium catalysts supported on porous nitrogen-doped carbon (Rux/CN) with hierarchical structure were synthesized using carbon nitride (C3N4) as template and phenanthroline (Phen) as ligand. Experimental tests in HCOOH dehydrogenation revealed the optimal catalyst Ru7/CN exhibiting good thermal stability and a high turnover frequency (TOF > 1300 h-1), which is more than one order of magnitude higher than that of the commercial Ru5/C catalyst.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.