Boyang Zhang, Alexander B. Weberg, Andrew J. Ahn, Marta Guron, Leighton O. Jones, Michael R. Gau, George C. Schatz, Eric J. Schelter
{"title":"A sustainable cobalt separation with validation by techno-economic analysis and life-cycle assessment","authors":"Boyang Zhang, Alexander B. Weberg, Andrew J. Ahn, Marta Guron, Leighton O. Jones, Michael R. Gau, George C. Schatz, Eric J. Schelter","doi":"10.1016/j.chempr.2024.10.028","DOIUrl":null,"url":null,"abstract":"Sustainable, cost-effective cobalt/nickel separations chemistry contributes to the realization of economically competitive lithium-ion battery recycling, as well as primary mining of cobalt and nickel. Such improvements can address supply chain challenges for cobalt, a critical element. Herein, we disclose a simple method for separating Co/Ni by second coordination-sphere molecular recognition. Selective cobalt precipitation is achieved using carbonate ions in an ammonia solution due to the outer-sphere, hydrogen bonding interactions between [Co(NH<sub>3</sub>)<sub>6</sub>]<sup>3+</sup> and CO<sub>3</sub><sup>2−</sup>, evaluated with density functional theory calculations. We demonstrate this method on mixtures of Co/Ni chlorides comprising a 10-fold excess of Ni and provide comparisons with ore-processing systems. High purities (99.4(3)% Co; 98.2(4)% Ni) and recoveries (77(8)% Co; ∼100% Ni) were observed for both Co- and Ni-enriched products using optimized conditions. This method is potentially economically competitive based on initial techno-economic analysis (TEA) and life-cycle assessment (LCA) that also illustrate advantages in terms of sustainability.","PeriodicalId":268,"journal":{"name":"Chem","volume":"9 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.10.028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Sustainable, cost-effective cobalt/nickel separations chemistry contributes to the realization of economically competitive lithium-ion battery recycling, as well as primary mining of cobalt and nickel. Such improvements can address supply chain challenges for cobalt, a critical element. Herein, we disclose a simple method for separating Co/Ni by second coordination-sphere molecular recognition. Selective cobalt precipitation is achieved using carbonate ions in an ammonia solution due to the outer-sphere, hydrogen bonding interactions between [Co(NH3)6]3+ and CO32−, evaluated with density functional theory calculations. We demonstrate this method on mixtures of Co/Ni chlorides comprising a 10-fold excess of Ni and provide comparisons with ore-processing systems. High purities (99.4(3)% Co; 98.2(4)% Ni) and recoveries (77(8)% Co; ∼100% Ni) were observed for both Co- and Ni-enriched products using optimized conditions. This method is potentially economically competitive based on initial techno-economic analysis (TEA) and life-cycle assessment (LCA) that also illustrate advantages in terms of sustainability.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.