High-Performance Solution-Processable Organic Light-Emitting Diode Based on a Narrowband Near-Ultraviolet and a Hot Exciton Strategy

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kai Jiang, Xiang Chang, Jieqiong Zhu, Tian Zhu, Junting Yu, Yafei Wang, Youming Zhang, Dongge Ma, Weiguo Zhu
{"title":"High-Performance Solution-Processable Organic Light-Emitting Diode Based on a Narrowband Near-Ultraviolet and a Hot Exciton Strategy","authors":"Kai Jiang, Xiang Chang, Jieqiong Zhu, Tian Zhu, Junting Yu, Yafei Wang, Youming Zhang, Dongge Ma, Weiguo Zhu","doi":"10.1002/anie.202421520","DOIUrl":null,"url":null,"abstract":"Achieving high efficiency narrowband near-ultraviolet (NUV) emitters in organic light emitting diode (OLED) is still a formidable challenge. Herein, a proof-of-concept hybridized local and charge transfer (HLCT) molecule, named ICz-BO, is prepared and characterized, in which both multiresonant (MR) skeletons are integrated via conjugation connection. A slightly distorted structure and weak intramolecular charge transfer (CT) interaction between two MR subunits lead to a high-lying reverse intersystem crossing (h-RISC) channel of T6→S1, also evidenced by both experimental and calculated results. Impressively, the ICz-BO emitter exhibits outstanding narrowband NUV emission at 404 nm with a full-width at half maximum of 28 nm in toluene solution. The solution processable OLED shows an excellent device performance with the recorded maximum external quantum efficiency of 12.01%, concomitant with an extremely low y-axis Commission Internationale de l’Éclairage (CIEy) value of 0.031. To the best of our knowledge, this is the highest efficiency reported for the HLCT-based NUV-OLEDs to date. This research proves that the MR skeleton plays a positive effect on the narrowband hot exciton emitter, which provides an alternative paradigm for developing high-efficiency NUV emitters.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"73 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421520","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving high efficiency narrowband near-ultraviolet (NUV) emitters in organic light emitting diode (OLED) is still a formidable challenge. Herein, a proof-of-concept hybridized local and charge transfer (HLCT) molecule, named ICz-BO, is prepared and characterized, in which both multiresonant (MR) skeletons are integrated via conjugation connection. A slightly distorted structure and weak intramolecular charge transfer (CT) interaction between two MR subunits lead to a high-lying reverse intersystem crossing (h-RISC) channel of T6→S1, also evidenced by both experimental and calculated results. Impressively, the ICz-BO emitter exhibits outstanding narrowband NUV emission at 404 nm with a full-width at half maximum of 28 nm in toluene solution. The solution processable OLED shows an excellent device performance with the recorded maximum external quantum efficiency of 12.01%, concomitant with an extremely low y-axis Commission Internationale de l’Éclairage (CIEy) value of 0.031. To the best of our knowledge, this is the highest efficiency reported for the HLCT-based NUV-OLEDs to date. This research proves that the MR skeleton plays a positive effect on the narrowband hot exciton emitter, which provides an alternative paradigm for developing high-efficiency NUV emitters.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信