K. W. Lim, R. Deguen, D. Cébron, A. Schulze, M. Mandea
{"title":"Compaction-Driven Convection in the Growing Inner Core","authors":"K. W. Lim, R. Deguen, D. Cébron, A. Schulze, M. Mandea","doi":"10.1029/2024gl110749","DOIUrl":null,"url":null,"abstract":"The Earth's inner core (IC) is known to exhibit heterogeneous structures with their origins still unknown. From the onset of nucleation, the IC can grow via sedimentation and compaction of iron crystals freezing out from the fluid outer core. Previous studies of IC growth have shown entrapment of fluid within the solid matrix, and unstable density profiles in 1D can appear depending on the efficiency of fluid percolation. In this study, we perform simulations of IC growth in spherical geometries (assuming axisymmetry). We find that it is possible for the IC to develop large-scale convective flows under certain conditions and, in some instances, produce small-scale heterogeneites close to the IC boundary. Assuming representative values for the physical properties of the Earth's IC, we show that it is possible for the IC to exhibit compaction-driven convection today.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"1 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl110749","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Earth's inner core (IC) is known to exhibit heterogeneous structures with their origins still unknown. From the onset of nucleation, the IC can grow via sedimentation and compaction of iron crystals freezing out from the fluid outer core. Previous studies of IC growth have shown entrapment of fluid within the solid matrix, and unstable density profiles in 1D can appear depending on the efficiency of fluid percolation. In this study, we perform simulations of IC growth in spherical geometries (assuming axisymmetry). We find that it is possible for the IC to develop large-scale convective flows under certain conditions and, in some instances, produce small-scale heterogeneites close to the IC boundary. Assuming representative values for the physical properties of the Earth's IC, we show that it is possible for the IC to exhibit compaction-driven convection today.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.