The Loss of Beneficial Thermal Priming on Global Coral Reefs

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Xinru Li, Simon D. Donner, Harmony A. Martell
{"title":"The Loss of Beneficial Thermal Priming on Global Coral Reefs","authors":"Xinru Li, Simon D. Donner, Harmony A. Martell","doi":"10.1111/gcb.17592","DOIUrl":null,"url":null,"abstract":"Warm-season marine heatwaves (MHWs) have greatly increased in frequency, severity, and extent over the last few decades, driving more frequent and severe coral bleaching episodes. Given the grave near-term threat to coral reefs imposed by MHWs, it is important to assess the mechanisms by which corals may acquire higher thermal tolerance. Recent field and laboratory studies have demonstrated that exposure to sublethal heat stress, known as “priming,” can reduce bleaching susceptibility during a subsequent MHW. Little is known, however, about how often priming conditions occur, and how effective those conditions may be at protecting coral reefs. We employed a global historical coral bleaching database and a high-resolution sea surface temperature dataset to assess the frequency of priming and examine its effect on coral bleaching sensitivity on a global scale. The analysis showed that coral reefs in parts of the western to central tropical Pacific experienced priming on average over twice a decade and had a higher likelihood of priming protection. Mixed-effects regression models indicated that priming conditions could mitigate coral bleaching response by up to 12% in advance of a moderate MHW. However, the protective effect of priming decreased, and even became harmful, with more severe MHWs. We detected spatial variations in priming frequency that could provide insight for conservation planning and explain some variations in bleaching sensitivity to MHWs. Even so, our findings suggest that thermal priming will not be sufficient to protect most coral reefs from MHWs in the future, without substantial efforts to mitigate climate change.","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"33 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/gcb.17592","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Warm-season marine heatwaves (MHWs) have greatly increased in frequency, severity, and extent over the last few decades, driving more frequent and severe coral bleaching episodes. Given the grave near-term threat to coral reefs imposed by MHWs, it is important to assess the mechanisms by which corals may acquire higher thermal tolerance. Recent field and laboratory studies have demonstrated that exposure to sublethal heat stress, known as “priming,” can reduce bleaching susceptibility during a subsequent MHW. Little is known, however, about how often priming conditions occur, and how effective those conditions may be at protecting coral reefs. We employed a global historical coral bleaching database and a high-resolution sea surface temperature dataset to assess the frequency of priming and examine its effect on coral bleaching sensitivity on a global scale. The analysis showed that coral reefs in parts of the western to central tropical Pacific experienced priming on average over twice a decade and had a higher likelihood of priming protection. Mixed-effects regression models indicated that priming conditions could mitigate coral bleaching response by up to 12% in advance of a moderate MHW. However, the protective effect of priming decreased, and even became harmful, with more severe MHWs. We detected spatial variations in priming frequency that could provide insight for conservation planning and explain some variations in bleaching sensitivity to MHWs. Even so, our findings suggest that thermal priming will not be sufficient to protect most coral reefs from MHWs in the future, without substantial efforts to mitigate climate change.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信