{"title":"Reversibly tuning thermopower enabled by phase-change electrolytes for low-grade heat harvesting","authors":"Yinghong Xu, Zhiwei Li, Simin Li, Shengliang Zhang, Xiaogang Zhang","doi":"10.1039/d4ee03351e","DOIUrl":null,"url":null,"abstract":"Thermodiffusion-based thermoelectrochemical cells have become one of the promising candidates for self-power supply by efficiently harvesting low-grade heat. However, fulfilling continuous energy output is still challenging because of the non-reciprocating motion of cations and anions during diffusion by adopting a steady heat source. Herein, we propose a moderate-concentration phase-change electrolyte for tuning the thermodiffusion process and the thermopower. Interestingly, the dominant ion can be alternated between cations and anions only by operando regulation of the physical state of the as-designed electrolyte, enabling the reversible polarization of devices from the p-type to the n-type with a tunable thermopower from 3.2 to −2.1 mV K<small><sup>−1</sup></small>. Moreover, the correlation of phase transition behaviors, solvation structures, and thermoelectrochemical performances is investigated. As a proof-of-concept, a prototype module consisting of n-type and p-type units connected in series displays high sensitivity and stability for long-term power generation under light irradiation, demonstrating the potential of phase-change electrolytes in energy-related applications.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"75 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03351e","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermodiffusion-based thermoelectrochemical cells have become one of the promising candidates for self-power supply by efficiently harvesting low-grade heat. However, fulfilling continuous energy output is still challenging because of the non-reciprocating motion of cations and anions during diffusion by adopting a steady heat source. Herein, we propose a moderate-concentration phase-change electrolyte for tuning the thermodiffusion process and the thermopower. Interestingly, the dominant ion can be alternated between cations and anions only by operando regulation of the physical state of the as-designed electrolyte, enabling the reversible polarization of devices from the p-type to the n-type with a tunable thermopower from 3.2 to −2.1 mV K−1. Moreover, the correlation of phase transition behaviors, solvation structures, and thermoelectrochemical performances is investigated. As a proof-of-concept, a prototype module consisting of n-type and p-type units connected in series displays high sensitivity and stability for long-term power generation under light irradiation, demonstrating the potential of phase-change electrolytes in energy-related applications.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).