Intelligent DNA Nanosystem for Broad-Spectrum Oncological Typing and Therapy

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Lina Zhu, Yuxi Zhang, Jiani Ding, Wenjuan Xin, Gao-Chao Fan, Zhi-Ling Song, Peisen Zhang, Xiliang Luo
{"title":"Intelligent DNA Nanosystem for Broad-Spectrum Oncological Typing and Therapy","authors":"Lina Zhu, Yuxi Zhang, Jiani Ding, Wenjuan Xin, Gao-Chao Fan, Zhi-Ling Song, Peisen Zhang, Xiliang Luo","doi":"10.1021/acssensors.4c02246","DOIUrl":null,"url":null,"abstract":"The occurrence of multiple primary cancers in individual patients underscores the need for diagnostic and therapeutic techniques with augmented cancer-targeting selectivity and broad-spectrum antitumor effects. To address this, we develop a quadruple-input-triggered <u>O</u>R-<u>A</u>ND-<u>A</u>ND logic gated oncological nanosystem (OAA). This system employs four cancer-related markers (EpCAM, MUC1, APE1, and miR-21) to generate three distinct fluorescence signals, enabling precise differentiation of various cancer cell lines (MCF-7, HepG2, and HeLa) from normal cells (MCF-10A). Additionally, the OAA system integrates photodynamic therapy (PDT) and gene silencing strategies, allowing selective activation of Ce6 release, miR-21 gene silencing, and VEGFR2 mRNA gene silencing through the OR-AND-AND logic gating mechanism in a cancer-specific manner. This synergetic therapeutic approach induces significant apoptosis in multiple cancer cell lines while sparing normal cells, demonstrating improved cancer-targeting specificity and broad-spectrum versatility. This intelligent platform precisely types and treats diverse cancer cells, powering the future exploration of advanced diagnostic and therapeutic strategies to combat highly heterogeneous diseases.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"13 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02246","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The occurrence of multiple primary cancers in individual patients underscores the need for diagnostic and therapeutic techniques with augmented cancer-targeting selectivity and broad-spectrum antitumor effects. To address this, we develop a quadruple-input-triggered OR-AND-AND logic gated oncological nanosystem (OAA). This system employs four cancer-related markers (EpCAM, MUC1, APE1, and miR-21) to generate three distinct fluorescence signals, enabling precise differentiation of various cancer cell lines (MCF-7, HepG2, and HeLa) from normal cells (MCF-10A). Additionally, the OAA system integrates photodynamic therapy (PDT) and gene silencing strategies, allowing selective activation of Ce6 release, miR-21 gene silencing, and VEGFR2 mRNA gene silencing through the OR-AND-AND logic gating mechanism in a cancer-specific manner. This synergetic therapeutic approach induces significant apoptosis in multiple cancer cell lines while sparing normal cells, demonstrating improved cancer-targeting specificity and broad-spectrum versatility. This intelligent platform precisely types and treats diverse cancer cells, powering the future exploration of advanced diagnostic and therapeutic strategies to combat highly heterogeneous diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信