A quantum leaky integrate-and-fire spiking neuron and network

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Dean Brand, Francesco Petruccione
{"title":"A quantum leaky integrate-and-fire spiking neuron and network","authors":"Dean Brand, Francesco Petruccione","doi":"10.1038/s41534-024-00921-x","DOIUrl":null,"url":null,"abstract":"<p>Quantum machine learning is in a period of rapid development and discovery, however it still lacks the resources and diversity of computational models of its classical complement. With the growing difficulties of classical models requiring extreme hardware and power solutions, and quantum models being limited by noisy intermediate-scale quantum (NISQ) hardware, there is an emerging opportunity to solve both problems together. Here we introduce a new software model for quantum neuromorphic computing — a quantum leaky integrate-and-fire (QLIF) neuron, implemented as a compact high-fidelity quantum circuit, requiring only 2 rotation gates and no CNOT gates. We use these neurons as building blocks in the construction of a quantum spiking neural network (QSNN), and a quantum spiking convolutional neural network (QSCNN), as the first of their kind. We apply these models to the MNIST, Fashion-MNIST, and KMNIST datasets for a full comparison with other classical and quantum models. We find that the proposed models perform competitively, with comparative accuracy, with efficient scaling and fast computation in classical simulation as well as on quantum devices.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"13 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00921-x","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum machine learning is in a period of rapid development and discovery, however it still lacks the resources and diversity of computational models of its classical complement. With the growing difficulties of classical models requiring extreme hardware and power solutions, and quantum models being limited by noisy intermediate-scale quantum (NISQ) hardware, there is an emerging opportunity to solve both problems together. Here we introduce a new software model for quantum neuromorphic computing — a quantum leaky integrate-and-fire (QLIF) neuron, implemented as a compact high-fidelity quantum circuit, requiring only 2 rotation gates and no CNOT gates. We use these neurons as building blocks in the construction of a quantum spiking neural network (QSNN), and a quantum spiking convolutional neural network (QSCNN), as the first of their kind. We apply these models to the MNIST, Fashion-MNIST, and KMNIST datasets for a full comparison with other classical and quantum models. We find that the proposed models perform competitively, with comparative accuracy, with efficient scaling and fast computation in classical simulation as well as on quantum devices.

Abstract Image

一个量子泄漏的集成和触发神经元和网络
量子机器学习正处于一个快速发展和发现的时期,但它仍然缺乏其经典补充的资源和计算模型的多样性。随着经典模型对极端硬件和功率解决方案的要求越来越高,以及量子模型受到噪声中等规模量子(NISQ)硬件的限制,同时解决这两个问题的机会正在出现。在这里,我们介绍了一种新的量子神经形态计算软件模型-量子泄漏集成和发射(QLIF)神经元,实现为紧凑的高保真量子电路,只需要2个旋转门和无CNOT门。我们使用这些神经元作为构建量子尖峰神经网络(QSNN)和量子尖峰卷积神经网络(QSCNN)的基石,作为同类中的第一个。我们将这些模型应用于MNIST、Fashion-MNIST和KMNIST数据集,与其他经典模型和量子模型进行全面比较。我们发现所提出的模型在经典模拟和量子器件上具有竞争力,具有相对的精度,具有有效的缩放和快速的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信