Interconnecting EDOT-Based Polymers with Native Lignin toward Enhanced Charge Storage in Conductive Wood

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Van Chinh Tran, Gabriella Mastantuoni, Jonas Garemark, Christopher H. Dreimol, Xin Wang, Magnus Berggren, Qi Zhou, Renee Kroon, Isak Engquist
{"title":"Interconnecting EDOT-Based Polymers with Native Lignin toward Enhanced Charge Storage in Conductive Wood","authors":"Van Chinh Tran, Gabriella Mastantuoni, Jonas Garemark, Christopher H. Dreimol, Xin Wang, Magnus Berggren, Qi Zhou, Renee Kroon, Isak Engquist","doi":"10.1021/acsami.4c16298","DOIUrl":null,"url":null,"abstract":"The 3D micro- and nanostructure of wood has extensively been employed as a template for cost-effective and renewable electronic technologies. However, other electroactive components, in particular native lignin, have been overlooked due to the absence of an approach that allows access of the lignin through the cell wall. In this study, we introduce an approach that focuses on establishing conjugated-polymer-based electrical connections at various length scales within the wood structure, aiming to leverage the charge storage capacity of native lignin in wood-based energy storage electrodes. We demonstrate that poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) PEDOT/PSS, integrated within the cell wall lumen, can be interfaced with native lignin through the wood cell wall through in situ polymerization of a water-soluble S-EDOT monomer. This approach increases the capacitance of the conductive wood to 315 mF cm<sup>–2</sup> at a scan rate of 5 mV s<sup>–1</sup>, which is seven and, respectively, two times higher compared to the capacitance of conductive wood made with the single components PEDOT/PSS or S-PEDOT. Moreover, we show that the capacitance is contributed by both the electroactive polymers and native lignin, with native lignin accounting for over 70% of the total charge storage capacity. We show that accessing native lignin through in situ creation of electrical interconnections within the wood structure offers a pathway toward sustainable, wood-based electrodes with improved charge-storage capacity for applications in electronics and energy storage.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"8 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c16298","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The 3D micro- and nanostructure of wood has extensively been employed as a template for cost-effective and renewable electronic technologies. However, other electroactive components, in particular native lignin, have been overlooked due to the absence of an approach that allows access of the lignin through the cell wall. In this study, we introduce an approach that focuses on establishing conjugated-polymer-based electrical connections at various length scales within the wood structure, aiming to leverage the charge storage capacity of native lignin in wood-based energy storage electrodes. We demonstrate that poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) PEDOT/PSS, integrated within the cell wall lumen, can be interfaced with native lignin through the wood cell wall through in situ polymerization of a water-soluble S-EDOT monomer. This approach increases the capacitance of the conductive wood to 315 mF cm–2 at a scan rate of 5 mV s–1, which is seven and, respectively, two times higher compared to the capacitance of conductive wood made with the single components PEDOT/PSS or S-PEDOT. Moreover, we show that the capacitance is contributed by both the electroactive polymers and native lignin, with native lignin accounting for over 70% of the total charge storage capacity. We show that accessing native lignin through in situ creation of electrical interconnections within the wood structure offers a pathway toward sustainable, wood-based electrodes with improved charge-storage capacity for applications in electronics and energy storage.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信