Nouran S. Abdelfattah, Tomasz Kula, Stephen J. Elledge
{"title":"T-Switch: A specificity-based engineering platform for developing safe and effective T cell therapeutics","authors":"Nouran S. Abdelfattah, Tomasz Kula, Stephen J. Elledge","doi":"10.1016/j.immuni.2024.11.009","DOIUrl":null,"url":null,"abstract":"Many promising targets for adoptive T cell therapy (ACT) are self-antigens, but self-reactive T cells are generally eliminated during thymic selection or diverted to regulatory phenotypes. To bypass T cell tolerance and obtain potent and safe T cell therapeutics, we developed T-Switch, an <em>in vitro</em> T cell receptor (TCR) engineering platform for the creation, modification, and comprehensive profiling of TCRs that can target self-antigens. T-Switch first expands T cells that recognize a “foreign” peptide closely related to a self-antigen. The fine specificity of the TCR is then modified by directed evolution of the peptide binding region to switch its specificity to the self-antigen of interest. We applied T-Switch to engineer synthetic TCRs reactive to a tumor-associated self-antigen, validated the safety and efficacy of this approach, and detected no off-target recognition as measured against the human proteome. Thus, T-Switch represents a resource for the creation of collections of highly sensitive synthetic TCRs for T cell-based immunotherapies.","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"80 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.11.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many promising targets for adoptive T cell therapy (ACT) are self-antigens, but self-reactive T cells are generally eliminated during thymic selection or diverted to regulatory phenotypes. To bypass T cell tolerance and obtain potent and safe T cell therapeutics, we developed T-Switch, an in vitro T cell receptor (TCR) engineering platform for the creation, modification, and comprehensive profiling of TCRs that can target self-antigens. T-Switch first expands T cells that recognize a “foreign” peptide closely related to a self-antigen. The fine specificity of the TCR is then modified by directed evolution of the peptide binding region to switch its specificity to the self-antigen of interest. We applied T-Switch to engineer synthetic TCRs reactive to a tumor-associated self-antigen, validated the safety and efficacy of this approach, and detected no off-target recognition as measured against the human proteome. Thus, T-Switch represents a resource for the creation of collections of highly sensitive synthetic TCRs for T cell-based immunotherapies.
期刊介绍:
Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.