{"title":"Effect of operation conditions on the structural and fatigue behaviors of hydrogen storage vessel in refueling station","authors":"Jongsuk Lee, Sunghan Kim","doi":"10.1016/j.ijhydene.2024.11.387","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a 1D numerical thermodynamic model for predicting the internal state of a high-pressure gaseous Type I hydrogen storage vessel during the charging-discharging process. Structural and fatigue analyses are conducted using the predicted state to identify stress concentration areas and to evaluate the fatigue behavior of the vessel. Furthermore, the effect of operating conditions on the thermal and fatigue behavior of the vessel is considered. Our findings suggest that operating conditions should be determined by considering both structural and fatigue behavior to ensure mechanical reliability. The results of this study are expected to assist in the evaluation of the safety of hydrogen storage vessels, and to contribute to the establishment of comprehensive safety standards for hydrogen energy infrastructure. The study proposes a method combining a numerical model with structural and fatigue analyses, for the safety assessment of hydrogen storage vessels, without the use of any complicated computation.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":"97 ","pages":"Pages 469-482"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924050833","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a 1D numerical thermodynamic model for predicting the internal state of a high-pressure gaseous Type I hydrogen storage vessel during the charging-discharging process. Structural and fatigue analyses are conducted using the predicted state to identify stress concentration areas and to evaluate the fatigue behavior of the vessel. Furthermore, the effect of operating conditions on the thermal and fatigue behavior of the vessel is considered. Our findings suggest that operating conditions should be determined by considering both structural and fatigue behavior to ensure mechanical reliability. The results of this study are expected to assist in the evaluation of the safety of hydrogen storage vessels, and to contribute to the establishment of comprehensive safety standards for hydrogen energy infrastructure. The study proposes a method combining a numerical model with structural and fatigue analyses, for the safety assessment of hydrogen storage vessels, without the use of any complicated computation.
期刊介绍:
The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc.
The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.