Preparation and properties of tungsten-rhenium alloys resistant to ultra-high temperatures

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhongyou Que , Xingyu Li , Lin Zhang , En Mei , Chenguang Guo , Haishen Sun , Junming Liu , Mingli Qin , Gang Chen , Xuanhui Qu
{"title":"Preparation and properties of tungsten-rhenium alloys resistant to ultra-high temperatures","authors":"Zhongyou Que ,&nbsp;Xingyu Li ,&nbsp;Lin Zhang ,&nbsp;En Mei ,&nbsp;Chenguang Guo ,&nbsp;Haishen Sun ,&nbsp;Junming Liu ,&nbsp;Mingli Qin ,&nbsp;Gang Chen ,&nbsp;Xuanhui Qu","doi":"10.1016/j.ijrmhm.2024.106975","DOIUrl":null,"url":null,"abstract":"<div><div>Tungsten‑rhenium (W-Re) alloys are extensively used in medical devices, electronics, industrial equipment, aerospace, and nuclear energy sectors due to their low ductile-to-brittle transition temperature (DBTT), excellent high-temperature creep resistance, and superior properties related to recrystallization, ablation, and irradiation at elevated temperatures. However, with the advancement of technologies in these critical fields, the performance demands on W-Re alloys are continually increasing. As a result, optimizing the fabrication processes of W-Re alloys to enhance their performance under ultra-high temperature conditions has become essential. This review provides a detailed overview of the ultra-high temperature applications of W-Re alloys, the effects of Re alloying on their performance, various strengthening methods and mechanisms, and fabrication techniques. By analyzing the strengthening mechanisms, we identify that advancements in powder preparation, bulk densification, and deformation processing are key to improving the stable performance of W-Re alloys under extreme temperatures. Additionally, we address several challenges related to the fabrication methods and propose solutions. We hope that this comprehensive review will support researchers in developing W-Re alloys with enhanced performance while addressing the production and engineering challenges involved.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"127 ","pages":"Article 106975"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436824004232","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Tungsten‑rhenium (W-Re) alloys are extensively used in medical devices, electronics, industrial equipment, aerospace, and nuclear energy sectors due to their low ductile-to-brittle transition temperature (DBTT), excellent high-temperature creep resistance, and superior properties related to recrystallization, ablation, and irradiation at elevated temperatures. However, with the advancement of technologies in these critical fields, the performance demands on W-Re alloys are continually increasing. As a result, optimizing the fabrication processes of W-Re alloys to enhance their performance under ultra-high temperature conditions has become essential. This review provides a detailed overview of the ultra-high temperature applications of W-Re alloys, the effects of Re alloying on their performance, various strengthening methods and mechanisms, and fabrication techniques. By analyzing the strengthening mechanisms, we identify that advancements in powder preparation, bulk densification, and deformation processing are key to improving the stable performance of W-Re alloys under extreme temperatures. Additionally, we address several challenges related to the fabrication methods and propose solutions. We hope that this comprehensive review will support researchers in developing W-Re alloys with enhanced performance while addressing the production and engineering challenges involved.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信