Coloring zonotopal quadrangulations of the projective space

IF 1 3区 数学 Q1 MATHEMATICS
Masahiro Hachimori , Atsuhiro Nakamoto , Kenta Ozeki
{"title":"Coloring zonotopal quadrangulations of the projective space","authors":"Masahiro Hachimori ,&nbsp;Atsuhiro Nakamoto ,&nbsp;Kenta Ozeki","doi":"10.1016/j.ejc.2024.104089","DOIUrl":null,"url":null,"abstract":"<div><div>A quadrangulation on a surface <span><math><msup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is a map of a simple graph on <span><math><msup><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> such that each 2-dimensional face is quadrangular. Youngs proved that every quadrangulation on the projective plane <span><math><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is either bipartite or 4-chromatic. It is a surprising result since every quadrangulation on an orientable surface with sufficiently high edge-width is 3-colorable. Kaiser and Stehlík defined a <span><math><mi>d</mi></math></span>-dimensional quadrangulation on the <span><math><mi>d</mi></math></span>-dimensional projective space <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for any <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and proved that any such quadrangulation has chromatic number at least <span><math><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow></math></span> if it is not bipartite. In this paper, we define another kind of <span><math><mi>d</mi></math></span>-dimensional quadrangulations of <span><math><msup><mrow><mi>P</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> for any <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, and prove that such a quadrangulation <span><math><mi>Q</mi></math></span> is always 4-chromatic if <span><math><mi>Q</mi></math></span> is non-bipartite and satisfies a special geometric condition related to a zonotopal tiling of a <span><math><mi>d</mi></math></span>-dimensional zonotope.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"125 ","pages":"Article 104089"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001744","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A quadrangulation on a surface F2 is a map of a simple graph on F2 such that each 2-dimensional face is quadrangular. Youngs proved that every quadrangulation on the projective plane P2 is either bipartite or 4-chromatic. It is a surprising result since every quadrangulation on an orientable surface with sufficiently high edge-width is 3-colorable. Kaiser and Stehlík defined a d-dimensional quadrangulation on the d-dimensional projective space Pd for any d2, and proved that any such quadrangulation has chromatic number at least d+2 if it is not bipartite. In this paper, we define another kind of d-dimensional quadrangulations of Pd for any d2, and prove that such a quadrangulation Q is always 4-chromatic if Q is non-bipartite and satisfies a special geometric condition related to a zonotopal tiling of a d-dimensional zonotope.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信