Optimization of plasma-activated water-assisted extraction of basil seed (Ocimum basilicum L.) mucilage: Effect on phenols, flavonoids, antioxidant, thermal and morphological properties
{"title":"Optimization of plasma-activated water-assisted extraction of basil seed (Ocimum basilicum L.) mucilage: Effect on phenols, flavonoids, antioxidant, thermal and morphological properties","authors":"Mahsa Jafari , Yousef Ramezan , Behjat Tajeddin , Mohammad Reza Khani","doi":"10.1016/j.ifset.2024.103876","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to enhance basil seed mucilage extraction using plasma-activated water (PAW). The response surface method (RSM) and rotating center composite design (RCCD) were used, considering the activation time of deionized water with cold plasma (0–15 min), water temperature (55–85 °C), and seed-water ratio (1:33–1:65). Optimal conditions for extraction were identified as a temperature of 78.39 °C, an activation time of 15 min, and a seed-water ratio of 1:50, leading to a 2.11 times higher extraction yield (7.6 %) compared to untreated samples (3.6 %) which had the same conditions. PAW-treated samples showed improved biological activities, including higher levels of total phenolic compounds (58.56 mg GAE/100 g), total flavonoids (87.81 mg QE/g), and DPPH inhibitory activity (60.98 %). Additionally, PAW treatment raised the melting point of basil seed mucilage, with minimal change in melting enthalpy. These alterations were attributed to plasma chemical reactions and increased surface energy of polysaccharide granules.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"99 ","pages":"Article 103876"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856424003151","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to enhance basil seed mucilage extraction using plasma-activated water (PAW). The response surface method (RSM) and rotating center composite design (RCCD) were used, considering the activation time of deionized water with cold plasma (0–15 min), water temperature (55–85 °C), and seed-water ratio (1:33–1:65). Optimal conditions for extraction were identified as a temperature of 78.39 °C, an activation time of 15 min, and a seed-water ratio of 1:50, leading to a 2.11 times higher extraction yield (7.6 %) compared to untreated samples (3.6 %) which had the same conditions. PAW-treated samples showed improved biological activities, including higher levels of total phenolic compounds (58.56 mg GAE/100 g), total flavonoids (87.81 mg QE/g), and DPPH inhibitory activity (60.98 %). Additionally, PAW treatment raised the melting point of basil seed mucilage, with minimal change in melting enthalpy. These alterations were attributed to plasma chemical reactions and increased surface energy of polysaccharide granules.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.